llama2.md 6.89 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2023-07-18 and added to Hugging Face Transformers on 2023-07-18.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
    </div>
</div>

# Llama 2

[Llama 2](https://huggingface.co/papers/2307.09288) is a family of large language models, Llama 2 and Llama 2-Chat, available in 7B, 13B, and 70B parameters. The Llama 2 model mostly keeps the same architecture as [Llama](./llama), but it is pretrained on more tokens, doubles the context length, and uses grouped-query attention (GQA) in the 70B model to improve inference.

Llama 2-Chat is trained with supervised fine-tuning (SFT), and reinforcement learning with human feedback (RLHF) - rejection sampling and proximal policy optimization (PPO) - is applied to the fine-tuned model to align the chat model with human preferences.

You can find all the original Llama 2 checkpoints under the [Llama 2 Family](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) collection.

> [!TIP]
> Click on the Llama 2 models in the right sidebar for more examples of how to apply Llama to different language tasks.

The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and how to chat with Llama 2-Chat from the command line.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipeline = pipeline(
    task="text-generation",
    model="meta-llama/Llama-2-7b-hf",
    dtype=torch.float16,
    device=0
)
pipeline("Plants create energy through a process known as")
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)

output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

</hfoption>
<hfoption id="transformers CLI">

```bash
transformers chat meta-llama/Llama-2-7b-chat-hf --dtype auto --attn_implementation flash_attention_2
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.

```py
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer

quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-13b-hf",
    dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)

output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.

```py
from transformers.utils.attention_visualizer import AttentionMaskVisualizer

visualizer = AttentionMaskVisualizer("meta-llama/Llama-2-7b-hf")
visualizer("Plants create energy through a process known as")
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llama-2-attn-mask.png"/>
</div>

## Notes

- Setting `config.pretraining_tp` to a value besides `1` activates a more accurate but slower computation of the linear layers. This matches the original logits better.
- The original model uses `pad_id = -1` to indicate a padding token. The Transformers implementation requires adding a padding token and resizing the token embedding accordingly.

    ```py
    tokenizer.add_special_tokens({"pad_token":"<pad>"})
    # update model config with padding token
    model.config.pad_token_id
    ```

- It is recommended to initialize the `embed_tokens` layer with the following code to ensure encoding the padding token outputs zeros.

    ```py
    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)
    ```

- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
- Don't use the `dtype` parameter in [`~AutoModel.from_pretrained`] if you're using FlashAttention-2 because it only supports fp16 or bf16. You should use [Automatic Mixed Precision](https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html), set fp16 or bf16 to `True` if using [`Trainer`], or use [torch.autocast](https://pytorch.org/docs/stable/amp.html#torch.autocast).

## LlamaConfig

[[autodoc]] LlamaConfig

## LlamaTokenizer

[[autodoc]] LlamaTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## LlamaTokenizerFast

[[autodoc]] LlamaTokenizerFast
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - update_post_processor
    - save_vocabulary

## LlamaModel

[[autodoc]] LlamaModel
    - forward

## LlamaForCausalLM

[[autodoc]] LlamaForCausalLM
    - forward

## LlamaForSequenceClassification

[[autodoc]] LlamaForSequenceClassification
    - forward