ijepa.md 5.14 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
<!--Copyright 2025 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2023-01-19 and added to Hugging Face Transformers on 2024-12-05.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

# I-JEPA

[I-JEPA](https://huggingface.co/papers/2301.08243) is a self-supervised learning method that learns semantic image representations by predicting parts of an image from other parts of the image. It compares the abstract representations of the image (rather than pixel level comparisons), which avoids the typical pitfalls of data augmentation bias and pixel-level details that don't capture semantic meaning.

You can find the original I-JEPA checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=ijepa) organization.
> [!TIP]
> This model was contributed by [jmtzt](https://huggingface.co/jmtzt).

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg">

> Click on the I-JEPA models in the right sidebar for more examples of how to apply I-JEPA to different image representation and classification tasks.

The example below demonstrates how to extract image features with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline
feature_extractor = pipeline(
    task="image-feature-extraction",
    model="facebook/ijepa_vith14_1k",
    device=0,
    dtype=torch.bfloat16
)
features = feature_extractor("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", return_tensors=True)  

print(f"Feature shape: {features.shape}")

```

</hfoption>
<hfoption id="AutoModel">

```py
import requests
import torch
from PIL import Image
from torch.nn.functional import cosine_similarity
from transformers import AutoModel, AutoProcessor  

url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"  
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw)
image_2 = Image.open(requests.get(url_2, stream=True).raw)

processor = AutoProcessor.from_pretrained("facebook/ijepa_vith14_1k")  
model = AutoModel.from_pretrained("facebook/ijepa_vith14_1k", dtype="auto", attn_implementation="sdpa")  


def infer(image):  
    inputs = processor(image, return_tensors="pt")  
    outputs = model(**inputs)  
    return outputs.last_hidden_state.mean(dim=1)  


embed_1 = infer(image_1)  
embed_2 = infer(image_2)  

similarity = cosine_similarity(embed_1, embed_2)  
print(similarity)
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.

```py
import torch
from transformers import BitsAndBytesConfig, AutoModel, AutoProcessor
from datasets import load_dataset

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw)
image_2 = Image.open(requests.get(url_2, stream=True).raw)

processor = AutoProcessor.from_pretrained("facebook/ijepa_vitg16_22k")
model = AutoModel.from_pretrained("facebook/ijepa_vitg16_22k", quantization_config=quantization_config, dtype="auto", attn_implementation="sdpa")


def infer(image):
    inputs = processor(image, return_tensors="pt")
    outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1)


embed_1 = infer(image_1)
embed_2 = infer(image_2)

similarity = cosine_similarity(embed_1, embed_2)
print(similarity)
```

## IJepaConfig

[[autodoc]] IJepaConfig

## IJepaModel

[[autodoc]] IJepaModel
    - forward

## IJepaForImageClassification

[[autodoc]] IJepaForImageClassification
    - forward