gemma2.md 5.38 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2024-07-31 and added to Hugging Face Transformers on 2024-06-27.*
<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
    </div>
</div>

# Gemma2

[Gemma 2](https://huggingface.co/papers/2408.00118) is a family of language models with pretrained and instruction-tuned variants, available in 2B, 9B, 27B parameters. The architecture is similar to the previous Gemma, except it features interleaved local attention (4096 tokens) and global attention (8192 tokens) and grouped-query attention (GQA) to increase inference performance.

The 2B and 9B models are trained with knowledge distillation, and the instruction-tuned variant was post-trained with supervised fine-tuning and reinforcement learning.

You can find all the original Gemma 2 checkpoints under the [Gemma 2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315) collection.

> [!TIP]
> Click on the Gemma 2 models in the right sidebar for more examples of how to apply Gemma to different language tasks.

The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.

<hfoptions id="usage">
<hfoption id="Pipeline">

```python
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="google/gemma-2-9b",
    dtype=torch.bfloat16,
    device_map="auto",
)

pipe("Explain quantum computing simply. ", max_new_tokens=50)
```

</hfoption>
<hfoption id="AutoModel">

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2-9b",
    dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)

input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)

outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```

</hfoption>
<hfoption id="transformers CLI">

```bash
echo -e "Explain quantum computing simply." | transformers run --task text-generation --model google/gemma-2-2b --device 0
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2-27b",
    dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)

input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)

outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.

```python
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("You are an assistant. Make sure you print me")
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-2-attn-mask.png"/>
</div>

## Gemma2Config

[[autodoc]] Gemma2Config

## Gemma2Model

[[autodoc]] Gemma2Model
    - forward

## Gemma2ForCausalLM

[[autodoc]] Gemma2ForCausalLM
    - forward

## Gemma2ForSequenceClassification

[[autodoc]] Gemma2ForSequenceClassification
    - forward

## Gemma2ForTokenClassification

[[autodoc]] Gemma2ForTokenClassification
    - forward