dit.md 3.66 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2022-03-04 and added to Hugging Face Transformers on 2022-03-10.*
<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

# DiT

[DiT](https://huggingface.co/papers/2203.02378) is an image transformer pretrained on large-scale unlabeled document images. It learns to predict the missing visual tokens from a corrupted input image. The pretrained DiT model can be used as a backbone in other models for visual document tasks like document image classification and table detection.

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dit_architecture.jpg"/>

You can find all the original DiT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=dit) organization.

> [!TIP]
> Refer to the [BEiT](./beit) docs for more examples of how to apply DiT to different vision tasks.

The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipeline = pipeline(
    task="image-classification",
    model="microsoft/dit-base-finetuned-rvlcdip",
    dtype=torch.float16,
    device=0
)
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dit-example.jpg")
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor

image_processor = AutoImageProcessor.from_pretrained(
    "microsoft/dit-base-finetuned-rvlcdip",
    use_fast=True,
)
model = AutoModelForImageClassification.from_pretrained(
    "microsoft/dit-base-finetuned-rvlcdip",
    device_map="auto",
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dit-example.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to(model.device)

with torch.no_grad():
  logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()

class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```

</hfoption>
</hfoptions>

## Notes

- The pretrained DiT weights can be loaded in a [BEiT] model with a modeling head to predict visual tokens.

   ```py
   from transformers import BeitForMaskedImageModeling

   model = BeitForMaskedImageModeling.from_pretraining("microsoft/dit-base")
   ```

## Resources

- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DiT/Inference_with_DiT_(Document_Image_Transformer)_for_document_image_classification.ipynb) for a document image classification inference example.