dia.md 5.6 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
<!--Copyright 2025 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2025-04-21 and added to Hugging Face Transformers on 2025-06-26.*

# Dia

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

## Overview

[Dia](https://github.com/nari-labs/dia) is an open-source text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
It can generate highly realistic dialogue from transcript including non-verbal communications such as laughter and coughing.
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).

**Model Architecture:**
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
for the audio portion (decoder), a pretrained codec model [DAC](./dac) is used - DAC encodes speech into discrete codebook
tokens and decodes them back into audio.

## Usage Tips

### Generation with Text

```python
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"

text = ["[S1] Dia is an open weights text to dialogue model."]
processor = AutoProcessor.from_pretrained(model_checkpoint)
inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device)

model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=256)  # corresponds to around ~2s

# save audio to a file
outputs = processor.batch_decode(outputs)
processor.save_audio(outputs, "example.wav")

```

### Generation with Text and Audio (Voice Cloning)

```python
from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"

ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
audio = ds[-1]["audio"]["array"]
# text is a transcript of the audio + additional text you want as new audio
text = ["[S1] I know. It's going to save me a lot of money, I hope. [S2] I sure hope so for you."]

processor = AutoProcessor.from_pretrained(model_checkpoint)
inputs = processor(text=text, audio=audio, padding=True, return_tensors="pt").to(torch_device)
prompt_len = processor.get_audio_prompt_len(inputs["decoder_attention_mask"])

model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=256)  # corresponds to around ~2s

# retrieve actually generated audio and save to a file
outputs = processor.batch_decode(outputs, audio_prompt_len=prompt_len)
processor.save_audio(outputs, "example_with_audio.wav")
```

### Training

```python
from datasets import load_dataset, Audio
from transformers import AutoProcessor, DiaForConditionalGeneration
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = "nari-labs/Dia-1.6B-0626"

ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
audio = ds[-1]["audio"]["array"]
# text is a transcript of the audio
text = ["[S1] I know. It's going to save me a lot of money, I hope."]

processor = AutoProcessor.from_pretrained(model_checkpoint)
inputs = processor(
    text=text,
    audio=audio,
    generation=False,
    output_labels=True,
    padding=True,
    return_tensors="pt"
).to(torch_device)

model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
out = model(**inputs)
out.loss.backward()
```

This model was contributed by [Jaeyong Sung](https://huggingface.co/buttercrab), [Arthur Zucker](https://huggingface.co/ArthurZ),
and [Anton Vlasjuk](https://huggingface.co/AntonV). The original code can be found [here](https://github.com/nari-labs/dia/).

## DiaConfig

[[autodoc]] DiaConfig

## DiaDecoderConfig

[[autodoc]] DiaDecoderConfig

## DiaEncoderConfig

[[autodoc]] DiaEncoderConfig

## DiaTokenizer

[[autodoc]] DiaTokenizer
    - __call__

## DiaFeatureExtractor

[[autodoc]] DiaFeatureExtractor
    - __call__

## DiaProcessor

[[autodoc]] DiaProcessor
    - __call__
    - batch_decode
    - decode

## DiaModel

[[autodoc]] DiaModel
    - forward

## DiaForConditionalGeneration

[[autodoc]] DiaForConditionalGeneration
    - forward
    - generate