deberta-v2.md 5.24 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2020-06-05 and added to Hugging Face Transformers on 2021-02-19.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
           <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
    </div>
</div>

# DeBERTa-v2

[DeBERTa-v2](https://huggingface.co/papers/2006.03654) improves on the original [DeBERTa](./deberta) architecture by using a SentencePiece-based tokenizer and a new vocabulary size of 128K. It also adds an additional convolutional layer within the first transformer layer to better learn local dependencies of input tokens. Finally, the position projection and content projection matrices are shared in the attention layer to reduce the number of parameters.

You can find all the original [DeBERTa-v2] checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=deberta-v2) organization.

> [!TIP]
> This model was contributed by [Pengcheng He](https://huggingface.co/DeBERTa).
>
> Click on the DeBERTa-v2 models in the right sidebar for more examples of how to apply DeBERTa-v2 to different language tasks.

The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipeline = pipeline(
    task="text-classification",
    model="microsoft/deberta-v2-xlarge-mnli",
    device=0,
    dtype=torch.float16
)
result = pipeline("DeBERTa-v2 is great at understanding context!")
print(result)
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(
    "microsoft/deberta-v2-xlarge-mnli"
)
model = AutoModelForSequenceClassification.from_pretrained(
    "microsoft/deberta-v2-xlarge-mnli",
    dtype=torch.float16,
    device_map="auto"
)

inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to(model.device)
outputs = model(**inputs)

logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")

```

</hfoption>

<hfoption id="transformers CLI">

```bash
echo -e "DeBERTa-v2 is great at understanding context!" | transformers run --task fill-mask --model microsoft/deberta-v2-xlarge-mnli --device 0
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [bitsandbytes quantization](../quantization/bitsandbytes) to only quantize the weights to 4-bit.

```py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig

model_id = "microsoft/deberta-v2-xlarge-mnli"
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
    bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(
    model_id,
    quantization_config=quantization_config,
    dtype="float16"
)

inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to(model.device)
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")

```

## DebertaV2Config

[[autodoc]] DebertaV2Config

## DebertaV2Tokenizer

[[autodoc]] DebertaV2Tokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## DebertaV2TokenizerFast

[[autodoc]] DebertaV2TokenizerFast
    - build_inputs_with_special_tokens
    - create_token_type_ids_from_sequences

## DebertaV2Model

[[autodoc]] DebertaV2Model
    - forward

## DebertaV2PreTrainedModel

[[autodoc]] DebertaV2PreTrainedModel
    - forward

## DebertaV2ForMaskedLM

[[autodoc]] DebertaV2ForMaskedLM
    - forward

## DebertaV2ForSequenceClassification

[[autodoc]] DebertaV2ForSequenceClassification
    - forward

## DebertaV2ForTokenClassification

[[autodoc]] DebertaV2ForTokenClassification
    - forward

## DebertaV2ForQuestionAnswering

[[autodoc]] DebertaV2ForQuestionAnswering
    - forward

## DebertaV2ForMultipleChoice

[[autodoc]] DebertaV2ForMultipleChoice
    - forward