cohere2.md 5.22 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-12-13 and added to Hugging Face Transformers on 2024-12-13.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
    </div>
</div>

# Cohere 2

[Cohere Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model. It is a multilingual model trained on 23 languages and has a context window of 128k. The model features three layers with sliding window attention and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.

This model is optimized for speed, cost-performance, and compute resources.

You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.

> [!TIP]
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.

The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.

<hfoptions id="usage">
<hfoption id="Pipeline">

```python
import torch
from transformers import pipeline

pipeline = pipeline(
    task="text-generation",
    model="CohereLabs/c4ai-command-r7b-12-2024",
    dtype=torch.float16,
    device_map=0
)

messages = [
    {"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"},
]
pipeline(messages)
```

</hfoption>
<hfoption id="AutoModel">

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
    "CohereLabs/c4ai-command-r7b-12-2024",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)

# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
output = model.generate(
    input_ids,
    max_new_tokens=100,
    do_sample=True,
    temperature=0.3,
    cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

</hfoption>
<hfoption id="transformers CLI">

```bash
# pip install -U flash-attn --no-build-isolation
transformers chat CohereLabs/c4ai-command-r7b-12-2024 --dtype auto --attn_implementation flash_attention_2
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview.md) overview for more available quantization backends.

The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to 4-bits.

```python
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM

bnb_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
    "CohereLabs/c4ai-command-r7b-12-2024",
    dtype=torch.float16,
    device_map="auto",
    quantization_config=bnb_config,
    attn_implementation="sdpa"
)

# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
output = model.generate(
    input_ids,
    max_new_tokens=100,
    do_sample=True,
    temperature=0.3,
    cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Cohere2Config

[[autodoc]] Cohere2Config

## Cohere2Model

[[autodoc]] Cohere2Model
    - forward

## Cohere2ForCausalLM

[[autodoc]] Cohere2ForCausalLM
    - forward