custom_models.md 12.7 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# Customizing models

Transformers models are designed to be customizable. A models code is fully contained in the [model](https://github.com/huggingface/transformers/tree/main/src/transformers/models) subfolder of the Transformers repository. Each folder contains a `modeling.py` and a `configuration.py` file. Copy these files to start customizing a model.

> [!TIP]
> It may be easier to start from scratch if you're creating an entirely new model. But for models that are very similar to an existing one in Transformers, it is faster to reuse or subclass the same configuration and model class.

This guide will show you how to customize a ResNet model, enable [AutoClass](./models#autoclass) support, and share it on the Hub.

## Configuration

A configuration, given by the base [`PreTrainedConfig`] class, contains all the necessary information to build a model. This is where you'll configure the attributes of the custom ResNet model. Different attributes gives different ResNet model types.

The main rules for customizing a configuration are:

1. A custom configuration must subclass [`PreTrainedConfig`]. This ensures a custom model has all the functionality of a Transformers' model such as [`~PreTrainedConfig.from_pretrained`], [`~PreTrainedConfig.save_pretrained`], and [`~PreTrainedConfig.push_to_hub`].
2. The [`PreTrainedConfig`] `__init__` must accept any `kwargs` and they must be passed to the superclass `__init__`. [`PreTrainedConfig`] has more fields than the ones set in your custom configuration, so when you load a configuration with [`~PreTrainedConfig.from_pretrained`], those fields need to be accepted by your configuration and passed to the superclass.

> [!TIP]
> It is useful to check the validity of some of the parameters. In the example below, a check is implemented to ensure `block_type` and `stem_type` belong to one of the predefined values.
>
> Add `model_type` to the configuration class to enable [AutoClass](./models#autoclass) support.

```py
from transformers import PreTrainedConfig
from typing import List

class ResnetConfig(PreTrainedConfig):
    model_type = "resnet"

    def __init__(
        self,
        block_type="bottleneck",
        layers: list[int] = [3, 4, 6, 3],
        num_classes: int = 1000,
        input_channels: int = 3,
        cardinality: int = 1,
        base_width: int = 64,
        stem_width: int = 64,
        stem_type: str = "",
        avg_down: bool = False,
        **kwargs,
    ):
        if block_type not in ["basic", "bottleneck"]:
            raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
        if stem_type not in ["", "deep", "deep-tiered"]:
            raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")

        self.block_type = block_type
        self.layers = layers
        self.num_classes = num_classes
        self.input_channels = input_channels
        self.cardinality = cardinality
        self.base_width = base_width
        self.stem_width = stem_width
        self.stem_type = stem_type
        self.avg_down = avg_down
        super().__init__(**kwargs)
```

Save the configuration to a JSON file in your custom model folder, `custom-resnet`, with [`~PreTrainedConfig.save_pretrained`].

```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d_config.save_pretrained("custom-resnet")
```

## Model

With the custom ResNet configuration, you can now create and customize the model. The model subclasses the base [`PreTrainedModel`] class. Like [`PreTrainedConfig`], inheriting from [`PreTrainedModel`] and initializing the superclass with the configuration extends Transformers' functionalities such as saving and loading to the custom model.

Transformers' models follow the convention of accepting a `config` object in the `__init__` method. This passes the entire `config` to the model sublayers, instead of breaking the `config` object into multiple arguments that are individually passed to the sublayers.

Writing models this way produces simpler code with a clear source of truth for any hyperparameters. It also makes it easier to reuse code from other Transformers' models.

You'll create two ResNet models, a barebones ResNet model that outputs the hidden states and a ResNet model with an image classification head.

<hfoptions id="resnet">
<hfoption id="ResnetModel">

Define a mapping between the block types and classes. Everything else is created by passing the configuration class to the ResNet model class.

> [!TIP]
> Add `config_class` to the model class to enable [AutoClass](#autoclass-support) support.

```py
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
from .configuration_resnet import ResnetConfig

BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}

class ResnetModel(PreTrainedModel):
    config_class = ResnetConfig

    def __init__(self, config):
        super().__init__(config)
        block_layer = BLOCK_MAPPING[config.block_type]
        self.model = ResNet(
            block_layer,
            config.layers,
            num_classes=config.num_classes,
            in_chans=config.input_channels,
            cardinality=config.cardinality,
            base_width=config.base_width,
            stem_width=config.stem_width,
            stem_type=config.stem_type,
            avg_down=config.avg_down,
        )

    def forward(self, tensor):
        return self.model.forward_features(tensor)
```

</hfoption>
<hfoption id="ResnetModelForImageClassification">

The `forward` method needs to be rewritten to calculate the loss for each logit if labels are available. Otherwise, the ResNet model class is the same.

> [!TIP]
> Add `config_class` to the model class to enable [AutoClass](#autoclass-support) support.

```py
import torch

class ResnetModelForImageClassification(PreTrainedModel):
    config_class = ResnetConfig

    def __init__(self, config):
        super().__init__(config)
        block_layer = BLOCK_MAPPING[config.block_type]
        self.model = ResNet(
            block_layer,
            config.layers,
            num_classes=config.num_classes,
            in_chans=config.input_channels,
            cardinality=config.cardinality,
            base_width=config.base_width,
            stem_width=config.stem_width,
            stem_type=config.stem_type,
            avg_down=config.avg_down,
        )

    def forward(self, tensor, labels=None):
        logits = self.model(tensor)
        if labels is not None:
            loss = torch.nn.functional.cross_entropy(logits, labels)
            return {"loss": loss, "logits": logits}
        return {"logits": logits}
```

</hfoption>
</hfoptions>

A model can return any output format. Returning a dictionary (like `ResnetModelForImageClassification`) with losses when labels are available makes the custom model compatible with [`Trainer`]. For other output formats, you'll need your own training loop or a different library for training.

Instantiate the custom model class with the configuration.

```py
resnet50d = ResnetModelForImageClassification(resnet50d_config)
```

At this point, you can load pretrained weights into the model or train it from scratch. In this guide, you'll load pretrained weights.

Load the pretrained weights from the [timm](https://hf.co/docs/timm/index) library, and then transfer those weights to the custom model with [load_state_dict](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.load_state_dict).

```py
import timm

pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```

## AutoClass

The [AutoClass](./models#model-classes) API is a shortcut for automatically loading the correct architecture for a given model. It is convenient to enable this for users loading your custom model.

Make sure you have the `model_type` attribute (must be different from existing model types) in the configuration class and `config_class` attribute in the model class. Use the [`~AutoConfig.register`] method to add the custom configuration and model to the [AutoClass](./models#model-classes) API.

> [!TIP]
> The first argument to [`AutoConfig.register`] must match the `model_type` attribute in the custom configuration class, and the first argument to [`AutoModel.register`] must match the `config_class` of the custom model class.

```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification

AutoConfig.register("resnet", ResnetConfig)
AutoModel.register(ResnetConfig, ResnetModel)
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
```

Your custom model code is now compatible with the [AutoClass](./models#autoclass) API. Users can load the model with the [AutoModel](./model_doc/auto#automodel) or [`AutoModelForImageClassification`] classes.

## Upload

Upload a custom model to the [Hub](https://hf.co/models) to allow other users to easily load and use it.

Ensure the model directory is structured correctly as shown below. The directory should contain:

- `modeling.py`: Contains the code for `ResnetModel` and `ResnetModelForImageClassification`. This file can rely on relative imports to other files as long as they're in the same directory.

> [!WARNING]
> When copying a Transformers' model file, replace all relative imports at the top of the `modeling.py` file to import from Transformers instead.

- `configuration.py`: Contains the code for `ResnetConfig`.
- `__init__.py`: Can be empty, this file allows Python `resnet_model` to be used as a module.

```bash
.
└── resnet_model
    ├── __init__.py
    ├── configuration_resnet.py
    └── modeling_resnet.py
```

To share the model, import the ResNet model and configuration.

```py
from resnet_model.configuration_resnet import ResnetConfig
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
```

Copy the code from the model and configuration files. To make sure the AutoClass objects are saved with [`~PreTrainedModel.save_pretrained`], call the [`~PreTrainedConfig.register_for_auto_class`] method. This modifies the configuration JSON file to include the AutoClass objects and mapping.

For a model, pick the appropriate `AutoModelFor` class based on the task.

```py
ResnetConfig.register_for_auto_class()
ResnetModel.register_for_auto_class("AutoModel")
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
```

To map more than one task to the model, edit `auto_map` in the configuration JSON file directly.

```json
"auto_map": {
    "AutoConfig": "<your-repo-name>--<config-name>",
    "AutoModel": "<your-repo-name>--<config-name>",
    "AutoModelFor<Task>": "<your-repo-name>--<config-name>",    
},
```

Create the configuration and model and load pretrained weights into it.

```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)

pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```

The model is ready to be pushed to the Hub now. Log in to your Hugging Face account from the command line or notebook.

<hfoptions id="push">
<hfoption id="huggingface-CLI">

```bash
hf auth login
```

</hfoption>
<hfoption id="notebook">

```py
from huggingface_hub import notebook_login

notebook_login()
```

</hfoption>
</hfoptions>

Call [`~PreTrainedModel.push_to_hub`] on the model to upload the model to the Hub.

```py
resnet50d.push_to_hub("custom-resnet50d")
```

The pretrained weights, configuration, `modeling.py` and `configuration.py` files should all be uploaded to the Hub now in a [repository](https://hf.co/sgugger/custom-resnet50d) under your namespace.

Because a custom model doesn't use the same modeling code as a Transformers' model, you need to add `trust_remode_code=True` in [`~PreTrainedModel.from_pretrained`] to load it. Refer to the load [custom models](./models#custom-models) section for more information.