add_new_pipeline.md 10.5 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# Adding a new pipeline

Make [`Pipeline`] your own by subclassing it and implementing a few methods. Share the code with the community on the [Hub](https://hf.co) and register the pipeline with Transformers so that everyone can quickly and easily use it.

This guide will walk you through the process of adding a new pipeline to Transformers.

## Design choices

At a minimum, you only need to provide [`Pipeline`] with an appropriate input for a task. This is also where you should begin when designing your pipeline.

Decide what input types [`Pipeline`] can accept. It can be strings, raw bytes, dictionaries, and so on. Try to keep the inputs in pure Python where possible because it's more compatible. Next, decide on the output [`Pipeline`] should return. Again, keeping the output in Python is the simplest and best option because it's easier to work with.

Keeping the inputs and outputs simple, and ideally JSON-serializable, makes it easier for users to run your [`Pipeline`] without needing to learn new object types. It's also common to support many different input types for even greater ease of use. For example, making an audio file acceptable from a filename, URL, or raw bytes gives the user more flexibility in how they provide the audio data.

## Create a pipeline

With an input and output decided, you can start implementing [`Pipeline`]. Your pipeline should inherit from the base [`Pipeline`] class and include 4 methods.

```py
from transformers import Pipeline

class MyPipeline(Pipeline):
    def _sanitize_parameters(self, **kwargs):

    def preprocess(self, inputs, args=2):

    def _forward(self, model_inputs):

    def postprocess(self, model_outputs):
```

1. `preprocess` takes the inputs and transforms them into the appropriate input format for the model.

```py
def preprocess(self, inputs, maybe_arg=2):
    model_input = Tensor(inputs["input_ids"])
    return {"model_input": model_input}
```

2. `_forward` shouldn't be called directly. `forward` is the preferred method because it includes safeguards to make sure everything works correctly on the expected device. Anything linked to the model belongs in `_forward` and everything else belongs in either `preprocess` or `postprocess`.

```py
def _forward(self, model_inputs):
    outputs = self.model(**model_inputs)
    return outputs
```

3. `postprocess` generates the final output from the models output in `_forward`.

```py
def postprocess(self, model_outputs, top_k=5):
    best_class = model_outputs["logits"].softmax(-1)
    return best_class
```

4. `_sanitize_parameters` lets users pass additional parameters to [`Pipeline`]. This could be during initialization or when [`Pipeline`] is called. `_sanitize_parameters` returns 3 dicts of additional keyword arguments that are passed directly to `preprocess`, `_forward`, and `postprocess`. Don't add anything if a user didn't call the pipeline with extra parameters. This keeps the default arguments in the function definition which is always more natural.

For example, add a `top_k` parameter in `postprocess` to return the top 5 most likely classes. Then in `_sanitize_parameters`, check if the user passed in `top_k` and add it to `postprocess_kwargs`.

```py
def _sanitize_parameters(self, **kwargs):
    preprocess_kwargs = {}
    if "maybe_arg" in kwargs:
        preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]

    postprocess_kwargs = {}
    if "top_k" in kwargs:
        postprocess_kwargs["top_k"] = kwargs["top_k"]
    return preprocess_kwargs, {}, postprocess_kwargs
```

Now the pipeline can return the top most likely labels if a user chooses to.

```py
from transformers import pipeline

pipeline = pipeline("my-task")
# returns 3 most likely labels
pipeline("This is the best meal I've ever had", top_k=3)
# returns 5 most likely labels by default
pipeline("This is the best meal I've ever had")
```

## Register a pipeline

Register the new task your pipeline supports in the `PIPELINE_REGISTRY`. The registry defines:

- The supported Pytorch model class with `pt_model`
- a default model which should come from a specific revision (branch, or commit hash) where the model works as expected with `default`
- the expected input with `type`

```py
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification

PIPELINE_REGISTRY.register_pipeline(
    "new-task",
    pipeline_class=MyPipeline,
    pt_model=AutoModelForSequenceClassification,
    default={"pt": ("user/awesome-model", "branch-name")},
    type="text",
)
```

## Share your pipeline

Share your pipeline with the community on the [Hub](https://hf.co) or you can add it directly to Transformers.

It's faster to upload your pipeline code to the Hub because it doesn't require a review from the Transformers team. Adding the pipeline to Transformers may be slower because it requires a review and you need to add tests to ensure your [`Pipeline`] works.

### Upload to the Hub

Add your pipeline code to the Hub in a Python file.

For example, a custom pipeline for sentence pair classification might look like the following code below.

```py
import numpy as np
from transformers import Pipeline

def softmax(outputs):
    maxes = np.max(outputs, axis=-1, keepdims=True)
    shifted_exp = np.exp(outputs - maxes)
    return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)

class PairClassificationPipeline(Pipeline):
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "second_text" in kwargs:
            preprocess_kwargs["second_text"] = kwargs["second_text"]
        return preprocess_kwargs, {}, {}

    def preprocess(self, text, second_text=None):
        return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)

    def _forward(self, model_inputs):
        return self.model(**model_inputs)

    def postprocess(self, model_outputs):
        logits = model_outputs.logits[0].numpy()
        probabilities = softmax(logits)

        best_class = np.argmax(probabilities)
        label = self.model.config.id2label[best_class]
        score = probabilities[best_class].item()
        logits = logits.tolist()
        return {"label": label, "score": score, "logits": logits}
```

Save the code in a file named `pair_classification.py`, and import and register it as shown below.

```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification

PIPELINE_REGISTRY.register_pipeline(
    "pair-classification",
    pipeline_class=PairClassificationPipeline,
    pt_model=AutoModelForSequenceClassification,
)
```

The [register_pipeline](https://github.com/huggingface/transformers/blob/9feae5fb0164e89d4998e5776897c16f7330d3df/src/transformers/pipelines/base.py#L1387) function registers the pipeline details (task type, pipeline class, supported backends) to a models `config.json` file.

```json
  "custom_pipelines": {
    "pair-classification": {
      "impl": "pair_classification.PairClassificationPipeline",
      "pt": [
        "AutoModelForSequenceClassification"
      ],
    }
  },
```

Call [`~Pipeline.push_to_hub`] to push the pipeline to the Hub. The Python file containing the code is copied to the Hub, and the pipelines model and tokenizer are also saved and pushed to the Hub. Your pipeline should now be available on the Hub under your namespace.

```py
from transformers import pipeline

pipeline = pipeline(task="pair-classification", model="sgugger/finetuned-bert-mrpc")
pipeline.push_to_hub("pair-classification-pipeline")
```

To use the pipeline, add `trust_remote_code=True` when loading the pipeline.

```py
from transformers import pipeline

pipeline = pipeline(task="pair-classification", trust_remote_code=True)
```

### Add to Transformers

Adding a custom pipeline to Transformers requires adding tests to make sure everything works as expected, and requesting a review from the Transformers team.

Add your pipeline code as a new module to the [pipelines](https://github.com/huggingface/transformers/tree/main/src/transformers/pipelines) submodule, and add it to the list of tasks defined in [pipelines/__init__.py](https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/__init__.py).

Next, add a new test for the pipeline in [transformers/tests/pipelines](https://github.com/huggingface/transformers/tree/main/tests/pipelines). You can look at the other tests for examples of how to test your pipeline.

The [run_pipeline_test](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L186) function should be very generic and run on the models defined in [model_mapping](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L48). This is important for testing future compatibility with new models.

You'll also notice `ANY` is used throughout the [run_pipeline_test](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L186) function. The models are random, so you can't check the actual values. Using `ANY` allows the test to match the output of the pipeline type instead.

Finally, you should also implement the following 4 tests.

1. [test_small_model_pt](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L59), use a small model for these pipelines to make sure they return the correct outputs. The results don't have to make sense. Each pipeline should return the same result.
1. [test_large_model_pt](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_zero_shot_image_classification.py#L187), use a realistic model for these pipelines to make sure they return meaningful results. These tests are slow and should be marked as slow.