benchmark_runner.py 19.8 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import gc
import json
import logging
import os
import pathlib
import re
import tempfile
import time
from contextlib import nullcontext
from datetime import datetime
from queue import Queue
from typing import Any

import torch
from datasets import Dataset
from huggingface_hub import HfApi
from tqdm import trange

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    CompileConfig,
    GenerationConfig,
    GenerationMixin,
)
from transformers.generation.streamers import BaseStreamer

from .benchmark_config import BenchmarkConfig
from .data_classes import BenchmarkMetadata, BenchmarkResult, GPURawMetrics, pretty_print_dict
from .hardware_metrics import GPUMonitor


try:
    from kernels import Mode, kernelize  # noqa: F401
except ImportError:
    kernelize = None
    Mode = None


DEFAULT_PROMPT = "\n".join([
    "The French Revolution was a period of political and societal change in France that began with the Estates General of 1789 and ended with the Coup of 18 Brumaire on 9 November 1799.",
    "Many of the revolution's ideas are considered fundamental principles of liberal democracy, and its values remain central to modern French political discourse.",
    "It was caused by a combination of social, political, and economic factors which the existing regime proved unable to manage.",
    "Financial crisis and widespread social distress led to the convocation of the Estates General in May 1789, its first meeting since 1614.",
    "The representatives of the Third Estate broke away and re-constituted themselves as a National Assembly in June.",
    "The Storming of the Bastille in Paris on 14 July led to a series of radical measures by the Assembly, including the abolition of feudalism, state control over the Catholic Church in France, and issuing the Declaration of the Rights of Man and of the Citizen.",
    "The next three years were dominated by a struggle for political control.",
    "King Louis XVI's attempted flight to Varennes in June 1791 further discredited the monarchy, and military defeats after the outbreak of the French Revolutionary Wars in April 1792 led to the insurrection of 10 August 1792.",
    "As a result, the monarchy was replaced by the French First Republic in September, followed by the execution of Louis XVI himself in January 1793.",
    "After another revolt in June 1793, the constitution was suspended, and political power passed from the National Convention to the Committee of Public Safety, dominated by radical Jacobins led by Maximilien Robespierre.",
    "About 16,000 people were sentenced by the Revolutionary Tribunal and executed in the Reign of Terror, which ended in July 1794 with the Thermidorian Reaction.",
    "Weakened by external threats and internal opposition, the Committee of Public Safety was replaced in November 1795 by the Directory.",
    "Its instability ended in the coup of 18 Brumaire and the establishment of the Consulate, with Napoleon Bonaparte as First Consul.",
])  # fmt: skip

PUSH_TO_HUB_TOKEN = os.getenv("PUSH_TO_HUB_TOKEN", None)


def compact_json_numeric_arrays(data: dict):
    # Match arrays that contain only numbers (ints/floats), whitespace, commas, and newlines
    pattern = r"\[\s*\n\s*((?:\d+(?:\.\d+)?\s*,\s*)*\d+(?:\.\d+)?)\s*\n\s*\]"

    def replace_numeric_array(match):
        # Get the array content
        content = match.group(1)
        # Remove extra whitespace but keep commas
        compact_content = re.sub(r"\s+", " ", content).strip()
        return f"[{compact_content}]"

    return re.sub(pattern, replace_numeric_array, json.dumps(data, indent=4, default=str), flags=re.DOTALL)


def get_git_revision() -> str:
    base_path = pathlib.Path(__file__).parent.parent.parent
    git_dir = base_path / ".git"
    with (git_dir / "HEAD").open("r") as head:
        ref = head.readline().split(" ")[-1].strip()
    with (git_dir / ref).open("r") as git_hash:
        return git_hash.readline().strip()


def get_sdpa_backend(backend_name: str | None) -> torch.nn.attention.SDPBackend | None:
    """Get the SDPA backend enum from string name."""
    if backend_name is None:
        return None

    try:
        backend_map = {
            "math": torch.nn.attention.SDPBackend.MATH,
            "flash_attention": torch.nn.attention.SDPBackend.FLASH_ATTENTION,
            "efficient_attention": torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
            "cudnn_attention": torch.nn.attention.SDPBackend.CUDNN_ATTENTION,
        }
        return backend_map.get(backend_name.lower())
    except AttributeError:
        # torch.nn.attention.SDPBackend not available in older torch versions
        return None


def flush_memory():
    """Flush GPU memory and run garbage collection."""
    gc.collect()
    # Dynamo resets
    torch._dynamo.reset()
    torch._dynamo.reset_code_caches()
    if hasattr(torch._inductor, "codecache"):
        # Clear FX graph cache
        if hasattr(torch._inductor.codecache, "FxGraphCache"):
            torch._inductor.codecache.FxGraphCache.clear()
        # Clear PyCodeCache
        if hasattr(torch._inductor.codecache, "PyCodeCache"):
            torch._inductor.codecache.PyCodeCache.cache_clear()
        # Clear TritonFuture cache (for async compilation)
        if hasattr(torch._inductor.codecache, "TritonFuture"):
            if hasattr(torch._inductor.codecache.TritonFuture, "_compile_cache"):
                torch._inductor.codecache.TritonFuture._compile_cache.clear()
    # Clear CUDA cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.synchronize()
    gc.collect()


class BenchmarkStreamer(BaseStreamer):
    def __init__(self, **kwargs) -> None:
        self.timeout = kwargs.pop("timeout", 10)
        self.timestamps = []
        self.text_queue = Queue()
        self.stop_signal = None

    def put(self, value):
        """Receives tokens and logs the timestamp of the generation."""
        self.timestamps.append(time.perf_counter())
        self.text_queue.put(value)

    def end(self):
        self.timestamps.append(time.perf_counter())
        self.text_queue.put(self.stop_signal)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.text_queue.get(timeout=self.timeout)
        if value == self.stop_signal:
            raise StopIteration()
        else:
            return value


class BenchmarkRunner:
    """Main benchmark runner that coordinates benchmark execution."""

    def __init__(
        self,
        logger: logging.Logger,
        output_dir: str | None = None,
        branch_name: str | None = None,
        commit_id: str | None = None,
        commit_message: str | None = None,
    ) -> None:
        # Those stay constant for the whole run
        self.logger = logger
        if output_dir is None:
            output_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "benchmark_results")
        self.output_dir = output_dir
        self.branch_name = branch_name
        self.commit_id = get_git_revision() if commit_id is None else commit_id
        self.commit_message = commit_message
        os.makedirs(self.output_dir, exist_ok=True)
        self.profile_dir = None
        # Attributes that are reset for each model
        self._setup_for = ""
        # Attributes that are reset for each run
        self.model: GenerationMixin | None = None

    def cleanup(self) -> None:
        del self.model
        self.model = None
        flush_memory()

    def setup_benchmark(self, model_id: str, config: BenchmarkConfig) -> None:
        # Some attributes only need to be set once per model
        if self._setup_for != model_id:
            self.tokenizer = AutoTokenizer.from_pretrained(model_id)
            # We set the EOS token to the padding token for open-ended generation
            self.tokenizer.eos_token = self.tokenizer.pad_token
            self._setup_for = model_id

        # Prepare inputs
        self.inputs = self.tokenizer(
            [DEFAULT_PROMPT for _ in range(config.batch_size)],
            return_tensors="pt",
            max_length=config.sequence_length,
            truncation=True,
            return_attention_mask=True,
        ).to(config.device)
        self.inputs["use_cache"] = True

        # Prepare generation config
        gen_config = GenerationConfig(
            do_sample=False, top_p=1.0, temperature=1.0, max_new_tokens=config.num_tokens_to_generate
        )

        # Prepare compile config
        if config.compile_mode is not None:
            gen_config.compile_config = CompileConfig(mode=config.compile_mode, options=config.compile_options)
            gen_config.cache_implementation = "static"

        # Load model
        self.logger.debug(f"Loading model {model_id} on device {config.device}...")
        dtype = getattr(torch, config.dtype.removeprefix("torch."))
        self.model = AutoModelForCausalLM.from_pretrained(
            model_id, dtype=dtype, attn_implementation=config.attn_implementation, generation_config=gen_config
        )
        self.model = self.model.eval().to(config.device)

        # Kernelize the model if needed
        if config.kernelize and kernelize is not None and Mode is not None:
            self.model = kernelize(self.model, mode=Mode.INFERENCE)

    def run_benchmark(
        self, model_id: str, config: BenchmarkConfig, num_tokens_to_profile: int = 0
    ) -> dict[str, Any] | None:
        """Run a single benchmark with the given model ID and config."""
        sdpa_ctx = nullcontext()
        if config.attn_implementation == "sdpa":
            sdpa_backend = get_sdpa_backend(config.sdpa_backend)
            sdpa_ctx = torch.nn.attention.sdpa_kernel(sdpa_backend)

        with sdpa_ctx, torch.no_grad():
            self.logger.info(f"Running benchmark scenario: {config.name}")

            # Quick validation: try one measurement first to see if this scenario works
            flush_memory()
            e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
                max_new_tokens=1, gpu_monitor=None
            )
            if e2e_latency < 0:
                self.logger.warning(f"Skipping config {config.name}: {e2e_latency = } (no GPU monitoring)")
                return None

            # Warmup runs
            self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
            for _ in trange(config.warmup_iterations):
                _ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
            self.logger.info("Warmup over.")

            # Measurement runs
            result = BenchmarkResult()
            self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
            for _ in trange(config.measurement_iterations):
                e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
                    max_new_tokens=config.num_tokens_to_generate,
                    gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
                )
                result.accumulate(e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics)
            self.logger.info("Benchmarking done. Cleaning up.")

            # Profile if needed
            if num_tokens_to_profile > 0:
                self.profile_generate(num_tokens_to_profile, config.name)

            return {
                "metadata": BenchmarkMetadata(
                    model_id=model_id,
                    branch_name=self.branch_name,
                    commit_id=self.commit_id,
                    commit_message=self.commit_message,
                ),
                "measurements": result,
                "config": config,
            }

    def time_generate(
        self,
        max_new_tokens: int,
        gpu_monitor: GPUMonitor | None = None,
    ) -> tuple[float, list[float], str, GPURawMetrics | None]:
        """Time the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
        # Prepare gpu monitoring if needed
        if gpu_monitor is not None:
            gpu_monitor.start()
        # Prepare streamer
        streamer = BenchmarkStreamer()
        # Generate and time
        wall_time_0 = time.perf_counter()
        outputs = self.model.generate(
            **self.inputs,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
        )
        wall_time_1 = time.perf_counter()
        # Stop gpu monitoring if needed
        gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
        # Check if generation had the right number of tokens
        input_tokens = self.inputs["input_ids"].size(-1)
        batch_size, output_tokens = outputs.shape
        new_tokens = output_tokens - input_tokens
        if new_tokens != max_new_tokens:
            raise RuntimeError(f"Generated {new_tokens} tokens, expected {max_new_tokens}")
        # Decode outputs
        decoded_output = self.tokenizer.decode(outputs[0, input_tokens:], skip_special_tokens=True)
        shape_and_decoded_output = f"{tuple(outputs.shape)} | {decoded_output}"
        # Compute intermediate quantities
        e2e_latency = wall_time_1 - wall_time_0
        token_generation_times = [t - wall_time_0 for t in streamer.timestamps[1:]]
        return e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics

    def profile_generate(self, num_tokens_to_profile: int, config_name: str) -> None:
        """Profile the latency of a call to model.generate() with the given (inputs) and (max_new_tokens)."""
        profiler = torch.profiler.profile(
            activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
            record_shapes=True,
        )
        with profiler as prof:
            _ = self.model.generate(
                **self.inputs,
                max_new_tokens=num_tokens_to_profile,
            )
        if self.profile_dir is None:
            self.profile_dir = self.output_dir + "_profiles"
            os.makedirs(self.profile_dir, exist_ok=True)
        prof.export_chrome_trace(f"{self.profile_dir}/{config_name}.json")

    def run_benchmarks(
        self,
        model_id: str,
        benchmark_configs: list[BenchmarkConfig],
        num_tokens_to_profile: int = 0,
        pretty_print_summary: bool = True,
    ) -> tuple[str, dict[str, Any]]:
        """Run multiple benchmarks for the given model ID and list of benchmark configs."""
        all_results = {}
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        start_time = time.perf_counter()

        n_configs = len(benchmark_configs)
        for i, config in enumerate(benchmark_configs):
            # Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
            if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
                default_backend = "flash_attention"  # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
                self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
                config.sdpa_backend = default_backend

            # Skip if already run
            if config.hash in all_results:
                self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
                continue

            # Otherwise, run the benchmark
            self.setup_benchmark(model_id, config)
            self.logger.info(
                f"Running benchmark of model {model_id} with scenario: {config.name} ({i + 1}/{n_configs})"
            )

            # Launch benchmark in a try/except block to avoid stopping the whole run if one benchmark fails
            try:
                results = self.run_benchmark(model_id, config, num_tokens_to_profile)
                if results is not None:
                    all_results[config.hash] = results

            except Exception as e:
                self.logger.error(f"Error running with scenario: {config.name}:\n{repr(e)}")
            # Cleanup model and save results
            self.cleanup()
            self.save_results(model_id, all_results, timestamp=timestamp)

        if pretty_print_summary:
            print()
            print("=" * 100)
            print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
            print(f"Total number of benchmarks: {len(all_results)}")
            if len(all_results) > 0:
                print("First run metadata:")
                first_key = list(all_results.keys())[0]
                first_metadata = all_results[first_key]["metadata"].to_dict()
                hardware_info = first_metadata.pop("hardware_info")
                pretty_print_dict(first_metadata | hardware_info, tabs=1)
            for result in all_results.values():
                print("=" * 100)
                print(f"Config: {result['config'].infer_name(compact=False)}\n")
                result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
            print("=" * 100)

        return (timestamp, all_results)

    def save_results(self, model_name: str, results: dict, timestamp: str = "") -> str:
        """Save benchmark results to JSON file."""
        # Create model-specific subdirectory
        model_name = model_name.replace("/", "_")
        model_dir = os.path.join(self.output_dir, model_name)
        os.makedirs(model_dir, exist_ok=True)

        # Create filename with timestamp
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
        filename = f"{model_name}_benchmark_{timestamp}.json"
        filepath = os.path.join(model_dir, filename)

        # Convert results to dict
        converted_results = {}
        for cfg_hash in results.keys():
            converted_results[cfg_hash] = {
                "metadata": results[cfg_hash]["metadata"].to_dict(),
                "measurements": results[cfg_hash]["measurements"].to_dict(),
                "config": results[cfg_hash]["config"].to_dict(),
            }

        # Save to JSON file
        with open(filepath, "w") as f:
            f.write(compact_json_numeric_arrays(converted_results))

        self.logger.info(f"Results saved to {filepath}")
        return filepath

    def push_results_to_hub(self, dataset_id: str, results: dict[Any, Any], timestamp: str) -> None:
        if PUSH_TO_HUB_TOKEN is None:
            raise ValueError(
                "PUSH_TO_HUB_TOKEN is not set, cannot push results to the Hub. When setting dataset_id, please also set the PUSH_TO_HUB_TOKEN environment variable."
            )

        n_results = len(results)
        self.logger.info(f"Pushing {n_results} results to: {dataset_id}")
        rows = []
        for cfg_hash, entry in results.items():
            row = {
                "benchmark_config_hash": cfg_hash,
                "config": entry["config"].to_dict(),
                "measurements": entry["measurements"].to_dict(),
                "metadata": entry["metadata"].to_dict(),
            }
            rows.append(row)

        ds = Dataset.from_list(rows)
        with tempfile.TemporaryDirectory() as tmp:
            jsonl_path = os.path.join(tmp, "data.jsonl")
            with open(jsonl_path, "w") as f:
                json_lines = []
                for ex in ds:
                    json_lines.append(json.dumps(ex, ensure_ascii=False))
                f.write("\n".join(json_lines))

            api = HfApi()
            # NOTE: we expect the repository to already exist
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") if not timestamp else timestamp
            file_name = f"benchmark_run_{timestamp}.jsonl"
            api.upload_file(
                path_or_fileobj=jsonl_path,
                path_in_repo=file_name,
                repo_id=dataset_id,
                repo_type="dataset",
                token=PUSH_TO_HUB_TOKEN,
            )
        self.logger.info(f"Succesfully uploaded results to: {dataset_id}")