Commit dcd2aabd authored by unknown's avatar unknown
Browse files

修改 mmpose-0.28.1 train.md

parent 692db38b
...@@ -55,7 +55,7 @@ configs/_base_/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数, ...@@ -55,7 +55,7 @@ configs/_base_/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,
1.pytorch单机多卡训练 1.pytorch单机多卡训练
```python ```python
./tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py ./tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py $GPUS
``` ```
2.mpirun单机多卡训练 2.mpirun单机多卡训练
mpirun --allow-run-as-root --bind-to none -np 4 single_process.sh a03r3n15 mpirun --allow-run-as-root --bind-to none -np 4 single_process.sh a03r3n15
...@@ -65,9 +65,9 @@ a03r3n15为master节点ip ...@@ -65,9 +65,9 @@ a03r3n15为master节点ip
1.pytorch多机多卡训练 1.pytorch多机多卡训练
在第一台机器上: 在第一台机器上:
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py 4 NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py $GPUS
在第二台机器上: 在第二台机器上:
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py 4 NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py $GPUS
2.mpirun多机多卡训练 2.mpirun多机多卡训练
mpirun --allow-run-as-root --hostfile hostfile --bind-to none -np 4 single_process.sh a03r3n15 mpirun --allow-run-as-root --hostfile hostfile --bind-to none -np 4 single_process.sh a03r3n15
......
...@@ -74,7 +74,7 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数, ...@@ -74,7 +74,7 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,
```python ```python
./tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py ./tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
``` ```
...@@ -84,11 +84,11 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数, ...@@ -84,11 +84,11 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,
在第一台机器上: 在第一台机器上:
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py 4 NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
在第二台机器上: 在第二台机器上:
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py 4 NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
### 半精度测试 ### 半精度测试
......
...@@ -37,7 +37,7 @@ ...@@ -37,7 +37,7 @@
<div align="center"> <div align="center">
English | [简体中文](README_CN.md) English | [简体中文](README_CN.md) | [模型测试步骤](train.md)
</div> </div>
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
## 测试前准备 ## 测试前准备
### 数据集准备 ### 数据集准备
使用dummy数据集. 使用COCO2017数据集.
### 环境部署 ### 环境部署
```python ```python
yum install python3 yum install python3
...@@ -19,79 +19,56 @@ pip3 install opencv-python ...@@ -19,79 +19,56 @@ pip3 install opencv-python
``` ```
### 安装python依赖包 ### 安装python依赖包
```python ```python
pip3 install torch-1.10.0a0+gitcc7c9c7-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+300a8a4-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.3.16-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
poseval安装 poseval安装
cd poseval cd poseval
pip install -e .   pip install -e .  
mmpose安装 mmpose安装
cd mmpose cd mmpose-0.28.1
pip3 install -e . pip3 install -e .
``` ```
注:测试不同版本的dtk,需安装对应版本的库whl包,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6 注:测试不同版本的dtk,需安装对应版本的库whl包.
## ResNet50-Bottom-Up测试 ## ResNet50-Bottom-Up测试
### 单卡测试(单精度) ### 单卡测试(单精度)
```python ```python
./sing_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py ./sing_test.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py
``` ```
若使用dtk22.04.1测试,需设置`export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`以下测试均相同.
#### 参数说明 #### 参数说明
configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659168500714](image/train/1659168500714.png)
#### 性能关注:time #### 性能关注:time
### 多卡测试(单精度)
```python #### 单机多卡训练
./multi_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py
``` 1.pytorch单机多卡训练
### 单卡测试(半精度)
```python
./sing_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_fp16_dummy.py
```
### 多卡测试(半精度)
```python
./multi_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_fp16_dummy.py
```
## ResNet50-Top-Down测试
### 单卡测试(单精度)
```python
./sing_test.sh configs/speed_test/res50_coco_256x192_dummy.py
```
#### 参数说明
configs/speed_test/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659169127556](image/train/1659169127556.png)
#### 性能关注:time
### 多卡测试(单精度)
```python
./multi_test.sh configs/speed_test/res50_coco_256x192_dummy.py
```
### 单卡测试(半精度)
```python
./sing_test.sh configs/speed_test/res50_coco_256x192_fp16_dummy.py
```
### 多卡测试(半精度)
```python
./multi_test.sh configs/speed_test/res50_coco_256x192_fp16_dummy.py
```
## HrNet-Top-Down测试
### 单卡测试(单精度)
```python
./sing_test.sh configs/speed_test/hrnet_w32_coco_256x192_dummy.py
```
#### 参数说明
configs/speed_test/hrnet_w32_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659169253165](image/train/1659169253165.png)
#### 性能关注:time
### 多卡测试(单精度)
```python
./multi_test.sh configs/speed_test/hrnet_w32_coco_256x192_dummy.py
```
### 单卡测试(半精度)
```python
./sing_test.sh configs/speed_test/hrnet_w32_coco_256x192_fp16_dummy.py
```
### 多卡测试(半精度)
```python ```python
./multi_test.sh configs/speed_test/hrnet_w32_coco_256x192_fp16_dummy.py ./tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS
``` ```
#### 多机多卡训练
1.pytorch多机多卡训练
在第一台机器上:
NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS
在第二台机器上:
NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS
### 半精度测试
修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。
### 其他模型测试
其他模型的测试步骤和ResNet50-Bottom-Up相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:
| 模型 | configs |
| ------------------ | ------------------------------------------------------------ |
| ResNet50-Top-Down | configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py |
| HrNet-Top-Down | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py |
| ResNet50-Bottom-Up | configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py |
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment