Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='SEResNeXt',
depth=50,
num_stages=4,
out_indices=(3, ),
groups=32,
width_per_group=4,
se_ratio=16,
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ShuffleNetV1', groups=3),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=960,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ShuffleNetV2', widen_factor=1.0),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=11, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=11, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=13, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=13, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=16, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=16, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='VGG', depth=19, num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VGG', depth=19, norm_cfg=dict(type='BN'), num_classes=1000),
neck=None,
head=dict(
type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=12,
embed_dim=768,
num_heads=12,
img_size=224,
patch_size=16,
in_channels=3,
feedforward_channels=3072,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=12,
embed_dim=768,
num_heads=12,
img_size=224,
patch_size=16,
in_channels=3,
feedforward_channels=3072,
drop_rate=0.1,
attn_drop_rate=0.),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
hidden_dim=3072,
loss=dict(type='LabelSmoothLoss', label_smooth_val=0.1),
topk=(1, 5),
),
train_cfg=dict(
augments=dict(type='BatchMixup', alpha=0.2, num_classes=1000,
prob=1.)))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=12,
embed_dim=768,
num_heads=12,
img_size=384,
patch_size=16,
in_channels=3,
feedforward_channels=3072,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=12,
embed_dim=768,
num_heads=12,
img_size=384,
patch_size=32,
in_channels=3,
feedforward_channels=3072,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=24,
embed_dim=1024,
num_heads=16,
img_size=224,
patch_size=16,
in_channels=3,
feedforward_channels=4096,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=24,
embed_dim=1024,
num_heads=16,
img_size=384,
patch_size=16,
in_channels=3,
feedforward_channels=4096,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
num_layers=24,
embed_dim=1024,
num_heads=16,
img_size=384,
patch_size=32,
in_channels=3,
feedforward_channels=4096,
drop_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[100, 150])
runner = dict(type='EpochBasedRunner', max_epochs=200)
# optimizer
optimizer = dict(
type='SGD',
lr=0.5,
momentum=0.9,
weight_decay=0.00004,
paramwise_cfg=dict(norm_decay_mult=0))
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='poly',
min_lr=0,
by_epoch=False,
warmup='constant',
warmup_iters=5000,
)
runner = dict(type='EpochBasedRunner', max_epochs=300)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment