Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
142dcf29
Commit
142dcf29
authored
Apr 15, 2022
by
hepj
Browse files
增加conformer代码
parent
7f99c1c3
Changes
444
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1602 additions
and
0 deletions
+1602
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/default_runtime.py
...former-main/mmdetection/configs/_base_/default_runtime.py
+14
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
...ection/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
+200
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/cascade_rcnn_r50_fpn.py
...mmdetection/configs/_base_/models/cascade_rcnn_r50_fpn.py
+183
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/fast_rcnn_r50_fpn.py
...in/mmdetection/configs/_base_/models/fast_rcnn_r50_fpn.py
+62
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
...tection/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
+116
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
...ection/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
+107
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_fpn.py
.../mmdetection/configs/_base_/models/faster_rcnn_r50_fpn.py
+111
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
...detection/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
+127
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/mask_rcnn_r50_fpn.py
...in/mmdetection/configs/_base_/models/mask_rcnn_r50_fpn.py
+124
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/retinanet_r50_fpn.py
...in/mmdetection/configs/_base_/models/retinanet_r50_fpn.py
+60
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/rpn_r50_caffe_c4.py
...ain/mmdetection/configs/_base_/models/rpn_r50_caffe_c4.py
+58
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/rpn_r50_fpn.py
...mer-main/mmdetection/configs/_base_/models/rpn_r50_fpn.py
+60
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/ssd300.py
...onformer-main/mmdetection/configs/_base_/models/ssd300.py
+49
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_1x.py
...-main/mmdetection/configs/_base_/schedules/schedule_1x.py
+11
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_20e.py
...main/mmdetection/configs/_base_/schedules/schedule_20e.py
+11
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_2x.py
...-main/mmdetection/configs/_base_/schedules/schedule_2x.py
+11
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/README.md
.../Conformer-main/mmdetection/configs/faster_rcnn/README.md
+61
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/faster_rcnn_conformer_small_patch32_fpn_1x_coco.py
...r_rcnn/faster_rcnn_conformer_small_patch32_fpn_1x_coco.py
+189
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
...ection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
+5
-0
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/README.md
...LP/Conformer-main/mmdetection/configs/mask_rcnn/README.md
+43
-0
No files found.
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/default_runtime.py
0 → 100644
View file @
142dcf29
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'CascadeRoIHead'
,
num_stages
=
3
,
stage_loss_weights
=
[
1
,
0.5
,
0.25
],
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))
],
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)
]),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/cascade_rcnn_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'CascadeRoIHead'
,
num_stages
=
3
,
stage_loss_weights
=
[
1
,
0.5
,
0.25
],
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))
]),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)
]),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/fast_rcnn_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'FastRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
0 → 100644
View file @
142dcf29
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
shared_head
=
dict
(
type
=
'ResLayer'
,
depth
=
50
,
stage
=
3
,
stride
=
2
,
dilation
=
1
,
style
=
'caffe'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
1024
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'BBoxHead'
,
with_avg_pool
=
True
,
roi_feat_size
=
7
,
in_channels
=
2048
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
12000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
6000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
0 → 100644
View file @
142dcf29
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
strides
=
(
1
,
2
,
2
,
1
),
dilations
=
(
1
,
1
,
1
,
2
),
out_indices
=
(
3
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
2048
,
feat_channels
=
2048
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
2048
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
2048
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
12000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
6000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/faster_rcnn_r50_fpn.py
0 → 100644
View file @
142dcf29
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
0 → 100644
View file @
142dcf29
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
shared_head
=
dict
(
type
=
'ResLayer'
,
depth
=
50
,
stage
=
3
,
stride
=
2
,
dilation
=
1
,
style
=
'caffe'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
1024
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'BBoxHead'
,
with_avg_pool
=
True
,
roi_feat_size
=
7
,
in_channels
=
2048
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
None
,
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
0
,
in_channels
=
2048
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
12000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
14
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
6000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/mask_rcnn_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/retinanet_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'RetinaNet'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
'on_input'
,
num_outs
=
5
),
bbox_head
=
dict
(
type
=
'RetinaHead'
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
4
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/rpn_r50_caffe_c4.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'RPN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
norm_eval
=
True
,
style
=
'caffe'
),
neck
=
None
,
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
12000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/rpn_r50_fpn.py
0 → 100644
View file @
142dcf29
# model settings
model
=
dict
(
type
=
'RPN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
)))
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/models/ssd300.py
0 → 100644
View file @
142dcf29
# model settings
input_size
=
300
model
=
dict
(
type
=
'SingleStageDetector'
,
pretrained
=
'open-mmlab://vgg16_caffe'
,
backbone
=
dict
(
type
=
'SSDVGG'
,
input_size
=
input_size
,
depth
=
16
,
with_last_pool
=
False
,
ceil_mode
=
True
,
out_indices
=
(
3
,
4
),
out_feature_indices
=
(
22
,
34
),
l2_norm_scale
=
20
),
neck
=
None
,
bbox_head
=
dict
(
type
=
'SSDHead'
,
in_channels
=
(
512
,
1024
,
512
,
256
,
256
,
256
),
num_classes
=
80
,
anchor_generator
=
dict
(
type
=
'SSDAnchorGenerator'
,
scale_major
=
False
,
input_size
=
input_size
,
basesize_ratio_range
=
(
0.15
,
0.9
),
strides
=
[
8
,
16
,
32
,
64
,
100
,
300
],
ratios
=
[[
2
],
[
2
,
3
],
[
2
,
3
],
[
2
,
3
],
[
2
],
[
2
]]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
])),
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.
,
ignore_iof_thr
=-
1
,
gt_max_assign_all
=
False
),
smoothl1_beta
=
1.
,
allowed_border
=-
1
,
pos_weight
=-
1
,
neg_pos_ratio
=
3
,
debug
=
False
),
test_cfg
=
dict
(
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.45
),
min_bbox_size
=
0
,
score_thr
=
0.02
,
max_per_img
=
200
))
cudnn_benchmark
=
True
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_1x.py
0 → 100644
View file @
142dcf29
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
8
,
11
])
total_epochs
=
12
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_20e.py
0 → 100644
View file @
142dcf29
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
16
,
19
])
total_epochs
=
20
PyTorch/NLP/Conformer-main/mmdetection/configs/_base_/schedules/schedule_2x.py
0 → 100644
View file @
142dcf29
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
16
,
22
])
total_epochs
=
24
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/README.md
0 → 100644
View file @
142dcf29
# Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
## Introduction
[ALGORITHM]
```
latex
@article
{
Ren
_
2017,
title=
{
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
}
,
journal=
{
IEEE Transactions on Pattern Analysis and Machine Intelligence
}
,
publisher=
{
Institute of Electrical and Electronics Engineers (IEEE)
}
,
author=
{
Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian
}
,
year=
{
2017
}
,
month=
{
Jun
}
,
}
```
## Results and models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
| R-50-DC5 | caffe | 1x | - | - | 37.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909-531f0f43.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909.log.json
)
|
| R-50-FPN | caffe | 1x | 3.8 | | 37.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_20200504_180032.log.json
)
|
| R-50-FPN | pytorch | 1x | 4.0 | 21.4 | 37.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json
)
|
| R-50-FPN | pytorch | 2x | - | - | 38.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_20200504_210434.log.json
)
|
| R-101-FPN | caffe | 1x | 5.7 | | 39.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_20200504_180057.log.json
)
|
| R-101-FPN | pytorch | 1x | 6.0 | 15.6 | 39.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130_204655.log.json
)
|
| R-101-FPN | pytorch | 2x | - | - | 39.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_20200504_210455.log.json
)
|
| X-101-32x4d-FPN | pytorch | 1x | 7.2 | 13.8 | 41.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203_000520.log.json
)
|
| X-101-32x4d-FPN | pytorch | 2x | - | - | 41.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_20200506_041400.log.json
)
|
| X-101-64x4d-FPN | pytorch | 1x | 10.3 | 9.4 | 42.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204_134340.log.json
)
|
| X-101-64x4d-FPN | pytorch | 2x | - | - | 41.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033.log.json
)
|
## Different regression loss
We trained with R-50-FPN pytorch style backbone for 1x schedule.
| Backbone | Loss type | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-------: | :------: | :------------: | :----: | :------: | :--------: |
| R-50-FPN | L1Loss | 4.0 | 21.4 | 37.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json
)
|
| R-50-FPN | IoULoss | | | 37.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco_20200506_095954.log.json
)
|
| R-50-FPN | GIoULoss | | | 37.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco_20200505_161120.log.json
)
|
| R-50-FPN | BoundedIoULoss | | | 37.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco_20200505_160738.log.json
)
|
## Pre-trained Models
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
|
[
R-50-DC5
](
./faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
)
| caffe | 1x | - | | 37.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851-b33d21b9.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851.log.json
)
|
[
R-50-DC5
](
./faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
)
| caffe | 3x | - | | 38.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107-34a53b2c.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107.log.json
)
|
[
R-50-FPN
](
./faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
)
| caffe | 2x | 4.3 | | 39.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_20200504_231813.log.json
)
|
[
R-50-FPN
](
./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
)
| caffe | 3x | 4.3 | | 40.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20200504_163323.log.json
)
We further finetune some pre-trained models on the COCO subsets, which only contain only a few of the 80 categories.
| Backbone | Style | Class name | Pre-traind model | Mem (GB) | box AP | Config | Download |
| ------------------------------------------------------------ | ----- | ------------------ | ------------------------------------------------------------ | -------- | ------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
[
R-50-FPN
](
./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
)
| caffe | person |
[
R-50-FPN-Caffe-3x
](
./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
)
| 3.7 | 55.8 |
[
config
](
./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929.log.json
)
|
|
[
R-50-FPN
](
./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
)
| caffe | person-bicycle-car |
[
R-50-FPN-Caffe-3x
](
./faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
)
| 3.7 | 44.1 |
[
config
](
./faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car_20201216_173117-6eda6d92.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car/faster_rcnn_r50_fpn_1x_coco-person-bicycle-car_20201216_173117.log.json
)
|
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/faster_rcnn_conformer_small_patch32_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
None
,
backbone
=
dict
(
type
=
'Conformer'
,
embed_dim
=
384
,
depth
=
12
,
patch_size
=
32
,
channel_ratio
=
4
,
num_heads
=
6
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
norm_eval
=
True
,
frozen_stages
=
1
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
1024
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
1000
,
nms_post
=
1000
,
max_num
=
1000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1344
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1344
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'bbox'
)
# optimizer
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
,
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
8
,
11
])
total_epochs
=
12
# optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
find_unused_parameters
=
True
\ No newline at end of file
PyTorch/NLP/Conformer-main/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
142dcf29
_base_
=
[
'../_base_/models/faster_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
PyTorch/NLP/Conformer-main/mmdetection/configs/mask_rcnn/README.md
0 → 100644
View file @
142dcf29
# Mask R-CNN
## Introduction
[ALGORITHM]
```
latex
@article
{
He
_
2017,
title=
{
Mask R-CNN
}
,
journal=
{
2017 IEEE International Conference on Computer Vision (ICCV)
}
,
publisher=
{
IEEE
}
,
author=
{
He, Kaiming and Gkioxari, Georgia and Dollar, Piotr and Girshick, Ross
}
,
year=
{
2017
}
,
month=
{
Oct
}
}
```
## Results and models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
| R-50-FPN | caffe | 1x | 4.3 | | 38.0 | 34.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_20200504_231812.log.json
)
|
| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 38.2 | 34.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json
)
|
| R-50-FPN | pytorch | 2x | - | - | 39.2 | 35.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_20200505_003907.log.json
)
|
| R-101-FPN | caffe | 1x | | | 40.4 | 36.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758.log.json
)
|
| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 40.0 | 36.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json
)
|
| R-101-FPN | pytorch | 2x | - | - | 40.8 | 36.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_20200505_071027.log.json
)
|
| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 11.3 | 41.9 | 37.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json
)
|
| X-101-32x4d-FPN | pytorch | 2x | - | - | 42.2 | 37.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_20200506_004702.log.json
)
|
| X-101-64x4d-FPN | pytorch | 1x | 10.7 | 8.0 | 42.8 | 38.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201_124310.log.json
)
|
| X-101-64x4d-FPN | pytorch | 2x | - | - | 42.7 | 38.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208.log.json
)
|
| X-101-32x8d-FPN | pytorch | 1x | - | - | 42.8 | 38.3 | |
## Pre-trained Models
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
|
[
R-50-FPN
](
./mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
)
| caffe | 2x | 4.3 | | 40.3 | 36.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_20200504_231822.log.json
)
|
[
R-50-FPN
](
./mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
)
| caffe | 3x | 4.3 | | 40.8 | 37.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth
)
|
[
log
](
http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_20200504_163245.log.json
)
|
[
X-101-32x8d-FPN
](
./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
)
| pytorch | 1x | - | | 43.6 | 39.0 |
|
[
X-101-32x8d-FPN
](
./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
)
| pytorch | 3x | - | | 44.0 | 39.3 |
Prev
1
2
3
4
5
6
7
…
23
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment