Commit 0fd8347d authored by unknown's avatar unknown
Browse files

添加mmclassification-0.24.1代码,删除mmclassification-speed-benchmark

parent cc567e9e
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='Conformer', arch='tiny', drop_path_rate=0.1, init_cfg=None),
neck=None,
head=dict(
type='ConformerHead',
num_classes=1000,
in_channels=[256, 384],
init_cfg=None,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
cal_acc=False),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=0.02, bias=0.),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(augments=[
dict(type='BatchMixup', alpha=0.8, num_classes=1000, prob=0.5),
dict(type='BatchCutMix', alpha=1.0, num_classes=1000, prob=0.5)
]))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ConvMixer', arch='1024/20'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ConvMixer', arch='1536/20'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='ConvMixer', arch='768/32', act_cfg=dict(type='ReLU')),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='base',
out_indices=(3, ),
drop_path_rate=0.5,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='large',
out_indices=(3, ),
drop_path_rate=0.5,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='small',
out_indices=(3, ),
drop_path_rate=0.4,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='tiny',
out_indices=(3, ),
drop_path_rate=0.1,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='ConvNeXt',
arch='xlarge',
out_indices=(3, ),
drop_path_rate=0.5,
gap_before_final_norm=True,
init_cfg=[
dict(
type='TruncNormal',
layer=['Conv2d', 'Linear'],
std=.02,
bias=0.),
dict(type='Constant', layer=['LayerNorm'], val=1., bias=0.),
]),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='121'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='161'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2208,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='169'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1664,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# Model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='DenseNet', arch='201'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1920,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b1'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b3'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b4'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1792,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b5'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b6'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2304,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment