"examples/community/stable_diffusion_controlnet_inpaint.py" did not exist on "77fc197f70d54b1f5e7a0d1286c8fc0d82eb2762"
callbacks.py 5.74 KB
Newer Older
zhenyi's avatar
zhenyi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import warnings

import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import scipy.signal
from tensorflow import keras
from tensorflow.keras import backend as K


class LossHistory(keras.callbacks.Callback):
    def __init__(self, log_dir):
        import datetime
        curr_time = datetime.datetime.now()
        time_str = datetime.datetime.strftime(curr_time,'%Y_%m_%d_%H_%M_%S')
        self.log_dir    = log_dir
        self.time_str   = time_str
        self.save_path  = os.path.join(self.log_dir, "loss_" + str(self.time_str))  
        self.losses     = []
        self.val_loss   = []
        
        try:
            os.makedirs(self.save_path)
        except OSError:
            pass

    def on_epoch_end(self, batch, logs={}):
        self.losses.append(logs.get('loss'))
        self.val_loss.append(logs.get('val_loss'))
        with open(os.path.join(self.save_path, "epoch_loss_" + str(self.time_str) + ".txt"), 'a') as f:
            f.write(str(logs.get('loss')))
            f.write("\n")
        with open(os.path.join(self.save_path, "epoch_val_loss_" + str(self.time_str) + ".txt"), 'a') as f:
            f.write(str(logs.get('val_loss')))
            f.write("\n")
        self.loss_plot()

    def loss_plot(self):
        iters = range(len(self.losses))

        plt.figure()
        plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss')
        plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss')
        try:
            if len(self.losses) < 25:
                num = 5
            else:
                num = 15
            
            plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss')
            plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss')
        except:
            pass

        plt.grid(True)
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.title('A Loss Curve')
        plt.legend(loc="upper right")

        plt.savefig(os.path.join(self.save_path, "epoch_loss_" + str(self.time_str) + ".png"))

        plt.cla()
        plt.close("all")

class ExponentDecayScheduler(keras.callbacks.Callback):
    def __init__(self,
                 decay_rate,
                 verbose=0):
        super(ExponentDecayScheduler, self).__init__()
        self.decay_rate         = decay_rate
        self.verbose            = verbose
        self.learning_rates     = []

    def on_epoch_end(self, batch, logs=None):
        learning_rate = K.get_value(self.model.optimizer.lr) * self.decay_rate
        K.set_value(self.model.optimizer.lr, learning_rate)
        if self.verbose > 0:
            print('Setting learning rate to %s.' % (learning_rate))

class ModelCheckpoint(keras.callbacks.Callback):
    def __init__(self, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epochs_since_last_save += 1
        if self.epochs_since_last_save >= self.period:
            self.epochs_since_last_save = 0
            filepath = self.filepath.format(epoch=epoch + 1, **logs)
            if self.save_best_only:
                current = logs.get(self.monitor)
                if current is None:
                    warnings.warn('Can save best model only with %s available, '
                                  'skipping.' % (self.monitor), RuntimeWarning)
                else:
                    if self.monitor_op(current, self.best):
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
                                  ' saving model to %s'
                                  % (epoch + 1, self.monitor, self.best,
                                     current, filepath))
                        self.best = current
                        if self.save_weights_only:
                            self.model.save_weights(filepath, overwrite=True)
                        else:
                            self.model.save(filepath, overwrite=True)
                    else:
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s did not improve' %
                                  (epoch + 1, self.monitor))
            else:
                if self.verbose > 0:
                    print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
                if self.save_weights_only:
                    self.model.save_weights(filepath, overwrite=True)
                else:
                    self.model.save(filepath, overwrite=True)