evaluation.py 16.4 KB
Newer Older
zhenyi's avatar
zhenyi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions to perform COCO evaluation."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import operator
import pprint
import six
import time

import io
from PIL import Image

import numpy as np
import tensorflow as tf

from mask_rcnn.utils.logging_formatter import logging

from mask_rcnn import coco_metric
from mask_rcnn.utils import coco_utils

from mask_rcnn.object_detection import visualization_utils

import dllogger
from dllogger import Verbosity


def process_prediction_for_eval(prediction):
    """Process the model prediction for COCO eval."""
    image_info = prediction['image_info']
    box_coordinates = prediction['detection_boxes']
    processed_box_coordinates = np.zeros_like(box_coordinates)

    for image_id in range(box_coordinates.shape[0]):
        scale = image_info[image_id][2]

        for box_id in range(box_coordinates.shape[1]):
            # Map [y1, x1, y2, x2] -> [x1, y1, w, h] and multiply detections
            # Map [y1, x1, y2, x2] -> [x1, y1, w, h] and multiply detections
            # by image scale.
            y1, x1, y2, x2 = box_coordinates[image_id, box_id, :]
            new_box = scale * np.array([x1, y1, x2 - x1, y2 - y1])
            processed_box_coordinates[image_id, box_id, :] = new_box

    prediction['detection_boxes'] = processed_box_coordinates
    return prediction


def compute_coco_eval_metric(predictor,
                             num_batches=-1,
                             include_mask=True,
                             annotation_json_file="",
                             eval_batch_size=-1,
                             report_frequency=None):
    """Compute COCO eval metric given a prediction generator.

    Args:
    predictor: a generator that iteratively pops a dictionary of predictions
      with the format compatible with COCO eval tool.
    num_batches: the number of batches to be aggregated in eval. This is how
      many times that the predictor gets pulled.
    include_mask: a boolean that indicates whether we include the mask eval.
    annotation_json_file: the annotation json file of the eval dataset.

    Returns:
    eval_results: the aggregated COCO metric eval results.
    """

    if annotation_json_file == "":
        annotation_json_file = None

    use_groundtruth_from_json = (annotation_json_file is not None)

    predictions = dict()
    batch_idx = 0

    if use_groundtruth_from_json:
        eval_metric = coco_metric.EvaluationMetric(annotation_json_file, include_mask=include_mask)

    else:
        eval_metric = coco_metric.EvaluationMetric(filename=None, include_mask=include_mask)

    def evaluation_preds(preds):

        # Essential to avoid modifying the source dict
        _preds = copy.deepcopy(preds)

        for k, v in six.iteritems(_preds):
            _preds[k] = np.concatenate(_preds[k], axis=0)

        if 'orig_images' in _preds and _preds['orig_images'].shape[0] > 10:
            # Only samples a few images for visualization.
            _preds['orig_images'] = _preds['orig_images'][:10]

        if use_groundtruth_from_json:
            eval_results = eval_metric.predict_metric_fn(_preds)

        else:
            images, annotations = coco_utils.extract_coco_groundtruth(_preds, include_mask)
            coco_dataset = coco_utils.create_coco_format_dataset(images, annotations)
            eval_results = eval_metric.predict_metric_fn(_preds, groundtruth_data=coco_dataset)

        return eval_results

    # Take into account cuDNN & Tensorflow warmup
    # Drop N first steps for avg throughput calculation
    BURNIN_STEPS = 100
    model_throughput_list = list()
    inference_time_list = list()

    while num_batches < 0 or batch_idx < num_batches:

        try:
            step_t0 = time.time()
            step_predictions = six.next(predictor)
            batch_time = time.time() - step_t0

            throughput = eval_batch_size / batch_time
            model_throughput_list.append(throughput)
            inference_time_list.append(batch_time)

            logging.info('Running inference on batch %03d/%03d... - Step Time: %.4fs - Throughput: %.1f imgs/s' % (
                batch_idx + 1,
                num_batches,
                batch_time,
                throughput
            ))

        except StopIteration:
            logging.info('Get StopIteration at %d batch.' % (batch_idx + 1))
            break

        step_predictions = process_prediction_for_eval(step_predictions)

        for k, v in step_predictions.items():

            if k not in predictions:
                predictions[k] = [v]

            else:
                predictions[k].append(v)

        batch_idx = batch_idx + 1

        # If you want the report to happen each report_frequency to happen each report_frequency batches.
        # Thus, each report is of eval_batch_size * report_frequency
        if report_frequency and batch_idx % report_frequency == 0:
            eval_results = evaluation_preds(preds=predictions)
            logging.info('Eval results: %s' % pprint.pformat(eval_results, indent=4))

    inference_time_list.sort()
    eval_results = evaluation_preds(preds=predictions)

    average_time = np.mean(inference_time_list)
    latency_50 = max(inference_time_list[:int(len(inference_time_list) * 0.5)])
    latency_90 = max(inference_time_list[:int(len(inference_time_list) * 0.90)])
    latency_95 = max(inference_time_list[:int(len(inference_time_list) * 0.95)])
    latency_99 = max(inference_time_list[:int(len(inference_time_list) * 0.99)])
    latency_100 = max(inference_time_list[:int(len(inference_time_list) * 1)])

    print()  # Visual Spacing
    logging.info("# @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #")
    logging.info("         Evaluation Performance Summary          ")
    logging.info("# @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #")

    total_processing_hours, rem = divmod(np.sum(model_throughput_list), 3600)
    total_processing_minutes, total_processing_seconds = divmod(rem, 60)

    if len(model_throughput_list) > BURNIN_STEPS:
        # Take into account cuDNN & Tensorflow warmup
        # Drop N first steps for avg throughput calculation
        # Also drop last step which may have a different batch size
        avg_throughput = np.mean(model_throughput_list[BURNIN_STEPS:-1])
    else:
        avg_throughput = -1.

    print()  # Visual Spacing
    logging.info("Average throughput: {throughput:.1f} samples/sec".format(throughput=avg_throughput))
    logging.info("Inference Latency Average (s) = {avg:.4f}".format(avg=average_time))
    logging.info("Inference Latency 50% (s) = {cf_50:.4f}".format(cf_50=latency_50))
    logging.info("Inference Latency 90%  (s) = {cf_90:.4f}".format(cf_90=latency_90))
    logging.info("Inference Latency 95%  (s) = {cf_95:.4f}".format(cf_95=latency_95))
    logging.info("Inference Latency 99%  (s) = {cf_99:.4f}".format(cf_99=latency_99))
    logging.info("Inference Latency 100%  (s) = {cf_100:.4f}".format(cf_100=latency_100))
    logging.info("Total processed steps: {total_steps}".format(total_steps=len(model_throughput_list)))
    logging.info(
        "Total processing time: {hours}h {minutes:02d}m {seconds:02d}s".format(
            hours=total_processing_hours,
            minutes=int(total_processing_minutes),
            seconds=int(total_processing_seconds)
        )
    )
    dllogger.log(step=(), data={"avg_inference_throughput": avg_throughput}, verbosity=Verbosity.DEFAULT)
    avg_inference_time = float(total_processing_hours * 3600 + int(total_processing_minutes) * 60 +
        int(total_processing_seconds))
    dllogger.log(step=(), data={"avg_inference_time": avg_inference_time}, verbosity=Verbosity.DEFAULT)
    logging.info("==================== Metrics ====================")

    # logging.info('Eval Epoch results: %s' % pprint.pformat(eval_results, indent=4))
    for key, value in sorted(eval_results.items(), key=operator.itemgetter(0)):
        logging.info("%s: %.9f" % (key, value))
    print()  # Visual Spacing

    return eval_results, predictions


def evaluate(eval_estimator,
             input_fn,
             num_eval_samples,
             eval_batch_size,
             include_mask=True,
             validation_json_file="",
             report_frequency=None):

    """Runs COCO evaluation once."""
    predictor = eval_estimator.predict(
        input_fn=input_fn,
        yield_single_examples=False
    )

    # Every predictor.next() gets a batch of prediction (a dictionary).
    num_eval_times = num_eval_samples // eval_batch_size
    assert num_eval_times > 0, 'num_eval_samples must be >= eval_batch_size!'

    eval_results, predictions = compute_coco_eval_metric(
        predictor,
        num_eval_times,
        include_mask,
        validation_json_file,
        eval_batch_size=eval_batch_size,
        report_frequency=report_frequency
    )

    return eval_results, predictions


def write_summary(eval_results, summary_dir, current_step, predictions=None):
    """Write out eval results for the checkpoint."""
    with tf.Graph().as_default():
        summaries = []

        # Summary writer writes out eval metrics.
        try:
            # Tensorflow 1.x
            summary_writer = tf.compat.v1.summary.FileWriter(summary_dir)
        except AttributeError:
            # Tensorflow 2.x
            summary_writer = tf.summary.create_file_writer(summary_dir)
            summary_writer.as_default()

        eval_results_dict = {}
        for metric in eval_results:
            try:
                summaries.append(tf.compat.v1.Summary.Value(tag=metric, simple_value=eval_results[metric]))
                eval_results_dict[metric] = float(eval_results[metric])

            except AttributeError:
                tf.summary.scalar(name=metric, data=eval_results[metric], step=current_step)
                eval_results_dict[metric] = float(eval_results[metric])
        dllogger.log(step=(), data=eval_results_dict, verbosity=Verbosity.DEFAULT)

        if isinstance(predictions, dict) and predictions:
            images_summary = get_image_summary(predictions, current_step)

            try:
                summaries += images_summary
            except TypeError:
                summaries.append(images_summary)

        try:
            # tf_summaries = tf.compat.v1.Summary(value=list(summaries))
            tf_summaries = tf.compat.v1.Summary(value=summaries)
            summary_writer.add_summary(tf_summaries, current_step)
            summary_writer.flush()

        except AttributeError:
            tf.summary.flush(summary_writer)


def generate_image_preview(image, boxes, scores, classes, gt_boxes=None, segmentations=None):
    """Creates an image summary given predictions."""
    max_boxes_to_draw = 100
    min_score_thresh = 0.1

    # Visualizes the predicitons.
    image_with_detections = visualization_utils.visualize_boxes_and_labels_on_image_array(
        image,
        boxes,
        classes=classes,
        scores=scores,
        category_index={},
        instance_masks=segmentations,
        use_normalized_coordinates=False,
        max_boxes_to_draw=max_boxes_to_draw,
        min_score_thresh=min_score_thresh,
        agnostic_mode=False
    )

    if gt_boxes is not None:
        # Visualizes the groundtruth boxes. They are in black by default.
        image_with_detections = visualization_utils.visualize_boxes_and_labels_on_image_array(
            image_with_detections,
            gt_boxes,
            classes=None,
            scores=None,
            category_index={},
            use_normalized_coordinates=False,
            max_boxes_to_draw=max_boxes_to_draw,
            agnostic_mode=True
        )

    return image_with_detections


def generate_image_buffer(input_image):
    buf = io.BytesIO()
    w, h = input_image.shape[:2]
    ratio = 1024 / w
    new_size = [int(w * ratio), int(h * ratio)]

    image = Image.fromarray(input_image.astype(np.uint8))
    image.thumbnail(new_size)
    image.save(buf, format='png')

    return buf.getvalue()


def get_image_summary(predictions, current_step, max_images=10):
    """Write out image and prediction for summary."""

    if 'orig_images' not in predictions:
        logging.info('Missing orig_images in predictions: %s', predictions.keys())
        return

    max_images = min(
        len(predictions['orig_images']) * predictions['orig_images'][0].shape[0],
        max_images
    )

    _detection_boxes = np.concatenate(predictions['detection_boxes'], axis=0)
    _detection_scores = np.concatenate(predictions['detection_scores'], axis=0)
    _detection_classes = np.concatenate(predictions['detection_classes'], axis=0)
    _image_info = np.concatenate(predictions['image_info'], axis=0)
    _num_detections = np.concatenate(predictions['num_detections'], axis=0)
    _orig_images = np.concatenate(predictions['orig_images'], axis=0)

    if 'detection_masks' in predictions:
        _detection_masks = np.concatenate(predictions['detection_masks'], axis=0)
    else:
        _detection_masks = None

    if 'groundtruth_boxes' in predictions:
        _groundtruth_boxes = np.concatenate(predictions['groundtruth_boxes'], axis=0)
    else:
        _groundtruth_boxes = None

    _orig_images = _orig_images * 255
    _orig_images = _orig_images.astype(np.uint8)

    image_previews = []

    for i in range(max_images):
        num_detections = min(len(_detection_boxes[i]), int(_num_detections[i]))

        detection_boxes = _detection_boxes[i][:num_detections]
        detection_scores = _detection_scores[i][:num_detections]
        detection_classes = _detection_classes[i][:num_detections]

        image = _orig_images[i]
        image_height = image.shape[0]
        image_width = image.shape[1]

        # Rescale the box to fit the visualization image.
        h, w = _image_info[i][3:5]
        detection_boxes = detection_boxes / np.array([w, h, w, h])
        detection_boxes = detection_boxes * np.array([image_width, image_height, image_width, image_height])

        if _groundtruth_boxes is not None:
            gt_boxes = _groundtruth_boxes[i]
            gt_boxes = gt_boxes * np.array([image_height, image_width, image_height, image_width])
        else:
            gt_boxes = None

        if _detection_masks is not None:
            instance_masks = _detection_masks[i][0:num_detections]
            segmentations = coco_metric.generate_segmentation_from_masks(
                instance_masks,
                detection_boxes,
                image_height,
                image_width
            )
        else:
            segmentations = None

        # From [x, y, w, h] to [x1, y1, x2, y2] and
        # process_prediction_for_eval() set the box to be [x, y] format, need to
        # reverted them to [y, x] format.
        xmin, ymin, w, h = np.split(detection_boxes, 4, axis=-1)
        xmax = xmin + w
        ymax = ymin + h

        boxes_to_visualize = np.concatenate([ymin, xmin, ymax, xmax], axis=-1)

        image_preview = generate_image_preview(
            image,
            boxes=boxes_to_visualize,
            scores=detection_scores,
            classes=detection_classes.astype(np.int32),
            gt_boxes=gt_boxes,
            segmentations=segmentations
        )
        image_previews.append(image_preview)

    try:
        summaries = []

        for i, image_preview in enumerate(image_previews):
            image_buffer = generate_image_buffer(image_preview)
            image_summary = tf.compat.v1.Summary.Image(encoded_image_string=image_buffer)
            image_value = tf.compat.v1.Summary.Value(tag='%d_input' % i, image=image_summary)

            summaries.append(image_value)

    except AttributeError:
        image_previews = np.array(image_previews)
        summaries = tf.summary.image(
            name='image_summary',
            data=image_previews,
            step=current_step,
            max_outputs=max_images
        )

    return summaries