submitit_pretrain.py 4.23 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------

import argparse
import os
import uuid
from pathlib import Path

import main_pretrain as trainer
import submitit


def parse_args():
    trainer_parser = trainer.get_args_parser()
    parser = argparse.ArgumentParser("Submitit for MAE pretrain", parents=[trainer_parser])
    parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
    parser.add_argument("--nodes", default=2, type=int, help="Number of nodes to request")
    parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job")
    parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")

    parser.add_argument("--partition", default="learnfair", type=str, help="Partition where to submit")
    parser.add_argument("--use_volta32", action='store_true', help="Request 32G V100 GPUs")
    parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler")
    return parser.parse_args()


def get_shared_folder() -> Path:
    user = os.getenv("USER")
    if Path("/checkpoint/").is_dir():
        p = Path(f"/checkpoint/{user}/experiments")
        p.mkdir(exist_ok=True)
        return p
    raise RuntimeError("No shared folder available")


def get_init_file():
    # Init file must not exist, but it's parent dir must exist.
    os.makedirs(str(get_shared_folder()), exist_ok=True)
    init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
    if init_file.exists():
        os.remove(str(init_file))
    return init_file


class Trainer(object):
    def __init__(self, args):
        self.args = args

    def __call__(self):
        import main_pretrain as trainer

        self._setup_gpu_args()
        trainer.main(self.args)

    def checkpoint(self):
        import os
        import submitit

        self.args.dist_url = get_init_file().as_uri()
        checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
        if os.path.exists(checkpoint_file):
            self.args.resume = checkpoint_file
        print("Requeuing ", self.args)
        empty_trainer = type(self)(self.args)
        return submitit.helpers.DelayedSubmission(empty_trainer)

    def _setup_gpu_args(self):
        import submitit
        from pathlib import Path

        job_env = submitit.JobEnvironment()
        self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
        self.args.log_dir = self.args.output_dir
        self.args.gpu = job_env.local_rank
        self.args.rank = job_env.global_rank
        self.args.world_size = job_env.num_tasks
        print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")


def main():
    args = parse_args()
    if args.job_dir == "":
        args.job_dir = get_shared_folder() / "%j"

    # Note that the folder will depend on the job_id, to easily track experiments
    executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)

    num_gpus_per_node = args.ngpus
    nodes = args.nodes
    timeout_min = args.timeout

    partition = args.partition
    kwargs = {}
    if args.use_volta32:
        kwargs['slurm_constraint'] = 'volta32gb'
    if args.comment:
        kwargs['slurm_comment'] = args.comment

    executor.update_parameters(
        mem_gb=40 * num_gpus_per_node,
        gpus_per_node=num_gpus_per_node,
        tasks_per_node=num_gpus_per_node,  # one task per GPU
        cpus_per_task=10,
        nodes=nodes,
        timeout_min=timeout_min,  # max is 60 * 72
        # Below are cluster dependent parameters
        slurm_partition=partition,
        slurm_signal_delay_s=120,
        **kwargs
    )

    executor.update_parameters(name="mae")

    args.dist_url = get_init_file().as_uri()
    args.output_dir = args.job_dir

    trainer = Trainer(args)
    job = executor.submit(trainer)

    # print("Submitted job_id:", job.job_id)
    print(job.job_id)


if __name__ == "__main__":
    main()