vision_transformer.py 27.8 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.resnet import resnet26d, resnet50d, resnet26, resnet50
from timm.models.registry import register_model

import logging
_logger = logging.getLogger(__name__)

from torchvision.ops import roi_align
import math
_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)

import pdb

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # patch models
    'vit_small_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
    ),
    'vit_base_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
    ),
    'vit_base_patch16_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_base_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_large_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
    'vit_large_patch16_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
    'vit_large_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),

    # patch models, imagenet21k (weights ported from official Google JAX impl)
    'vit_base_patch16_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth',
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
    'vit_base_patch32_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth',
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
    'vit_large_patch16_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth',
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
    'vit_large_patch32_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
    'vit_huge_patch14_224_in21k': _cfg(
        url='',  # FIXME I have weights for this but > 2GB limit for github release binaries
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),

    # hybrid models (weights ported from official Google JAX impl)
    'vit_base_resnet50_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
        num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'),
    'vit_base_resnet50_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
        input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'),

    # hybrid models (my experiments)
    'vit_small_resnet26d_224': _cfg(),
    'vit_small_resnet50d_s3_224': _cfg(),
    'vit_base_resnet26d_224': _cfg(),
    'vit_base_resnet50d_224': _cfg(),
}


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), vis=False):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        self.img_size = img_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
                # map for all networks, the feature metadata has reliable channel and stride info, but using
                # stride to calc feature dim requires info about padding of each stage that isn't captured.
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]  # last feature if backbone outputs list/tuple of features
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            if hasattr(self.backbone, 'feature_info'):
                feature_dim = self.backbone.feature_info.channels()[-1]
            else:
                feature_dim = self.backbone.num_features
        self.num_patches = feature_size[0] * feature_size[1]
        self.proj = nn.Conv2d(feature_dim, embed_dim, 1)

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)

        if hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
        else:
            self.patch_embed = PatchEmbed(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        self.dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=self.dpr[i], norm_layer=norm_layer,
            )
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
        #self.repr = nn.Linear(embed_dim, representation_size)
        #self.repr_act = nn.Tanh()

        # Classifier head
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def resize_pos_embed(posemb, posemb_new):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
    ntok_new = posemb_new.shape[1]
    if True:
        posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
        ntok_new -= 1
    else:
        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    gs_new = int(math.sqrt(ntok_new))
    _logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
    return posemb


def checkpoint_filter_fn(state_dict, model):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    if 'model' in state_dict:
        # For deit models
        state_dict = state_dict['model']
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
            # For old models that I trained prior to conv based patchification
            O, I, H, W = model.patch_embed.proj.weight.shape
            v = v.reshape(O, -1, H, W)
        elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
            # To resize pos embedding when using model at different size from pretrained weights
            v = resize_pos_embed(v, model.pos_embed)
        out_dict[k] = v
    return out_dict


def _create_vision_transformer(variant, pretrained=False, distilled=False, **kwargs):
    default_cfg = default_cfgs[variant]
    default_num_classes = default_cfg['num_classes']
    default_img_size = default_cfg['input_size'][-1]

    num_classes = kwargs.pop('num_classes', default_num_classes)
    img_size = kwargs.pop('img_size', default_img_size)
    repr_size = kwargs.pop('representation_size', None)
    if repr_size is not None and num_classes != default_num_classes:
        # Remove representation layer if fine-tuning. This may not always be the desired action,
        # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
        _logger.warning("Removing representation layer for fine-tuning.")
        repr_size = None

    # model_cls = DistilledVisionTransformer if distilled else VisionTransformer
    model_cls =  VisionTransformer
    # model = model_cls(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs)
    model = model_cls(img_size=img_size, num_classes=num_classes, **kwargs)
    model.default_cfg = default_cfg

    if pretrained:
        load_pretrained(
            model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3),
            filter_fn=partial(checkpoint_filter_fn, model=model))
    return model


@register_model
def vit_small_patch16_224(pretrained=False, **kwargs):
    """ My custom 'small' ViT model. Depth=8, heads=8= mlp_ratio=3."""
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3.,
        qkv_bias=False, norm_layer=nn.LayerNorm, **kwargs)
    if pretrained:
        # NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
        model_kwargs.setdefault('qk_scale', 768 ** -0.5)
    model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_384(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_384(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_224(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_224(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
    """
    model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_384(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_384(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs)
    model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
    """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(
        patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs)
    model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs)
    model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
    """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_kwargs = dict(
        patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs)
    model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
    """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: converted weights not currently available, too large for github release hosting.
    """
    model_kwargs = dict(
        patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs)
    model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_resnet50_224_in21k(pretrained=False, **kwargs):
    """ R50+ViT-B/16 hybrid model from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    # create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
    backbone = ResNetV2(
        layers=(3, 4, 9), num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
        preact=False, stem_type='same', conv_layer=StdConv2dSame)
    model_kwargs = dict(
        embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone,
        representation_size=768, **kwargs)
    model = _create_vision_transformer('vit_base_resnet50_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_resnet50_384(pretrained=False, **kwargs):
    """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    # create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head
    backbone = ResNetV2(
        layers=(3, 4, 9), num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
        preact=False, stem_type='same', conv_layer=StdConv2dSame)
    model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
    model = _create_vision_transformer('vit_base_resnet50_384', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_resnet26d_224(pretrained=False, **kwargs):
    """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights.
    """
    backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
    model = _create_vision_transformer('vit_small_resnet26d_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_small_resnet50d_s3_224(pretrained=False, **kwargs):
    """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights.
    """
    backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3])
    model_kwargs = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs)
    model = _create_vision_transformer('vit_small_resnet50d_s3_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_resnet26d_224(pretrained=False, **kwargs):
    """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights.
    """
    backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
    model = _create_vision_transformer('vit_base_resnet26d_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_base_resnet50d_224(pretrained=False, **kwargs):
    """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights.
    """
    backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs)
    model = _create_vision_transformer('vit_base_resnet50d_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def vit_deit_tiny_patch16_224(pretrained=False, **kwargs):
    """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
    ImageNet-1k weights from https://github.com/facebookresearch/deit.
    """
    model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
    model = _create_vision_transformer('vit_deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
    return model

@register_model
def deit_small_resnet50_224(pretrained=False, **kwargs):
    pretrained_backbone = kwargs.get('pretrained_backbone', False)  # default to True for now, for testing
    backbone = resnet50(pretrained=pretrained_backbone, features_only=True, out_indices=[4])
    model = VisionTransformer(patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), hybrid_backbone=backbone, **kwargs)
    model.default_cfg = default_cfgs['vit_small_resnet50_224']
    return model