train.py 16.5 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#
#-------------------------------------------------------------------------
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import os
import math
import time
import ctypes

from copy import deepcopy

import torch
import sacrebleu
import dllogger as DLLogger

from fairseq import data, distributed_utils, options, utils, tokenizer
from fairseq.ddp_trainer import DDPTrainer
from fairseq.meters import StopwatchMeter
from fairseq.sequence_generator import SequenceGenerator
from fairseq.data import data_utils, load_dataset_splits
from fairseq.models import build_model
from fairseq.log_helper import setup_logger, reset_perf_meters

def main(args):

    print(args)
    setup_logger(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    if args.distributed_world_size > 1:
        assert torch.distributed.is_initialized()
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
        torch.cuda.synchronize()
    pValue = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int))
    ctypes.CDLL('libcudart.so').cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128))
    ctypes.CDLL('libcudart.so').cudaDeviceGetLimit(pValue, ctypes.c_int(0x05))
    torch.manual_seed(args.seed)

    src_dict, tgt_dict = data_utils.load_dictionaries(args)
    add_extra_items_to_checkpoint({'src_dict': src_dict, 'tgt_dict': tgt_dict})
    datasets = load_dataset_splits(args, ['train', 'valid', 'test'], src_dict, tgt_dict)

    model = build_model(args)
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))

    # Build trainer
    if torch.cuda.get_device_capability(0)[0] >= 7 and not args.amp:
        print('| NOTICE: your device may support faster training with --amp')
    trainer = DDPTrainer(args, model)
    print('| model {}, criterion {}'.format(args.arch, trainer.criterion.__class__.__name__))
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    epoch_itr = data.EpochBatchIterator(
        dataset=datasets[args.train_subset],
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=args.max_positions,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )
    # Load the latest checkpoint if one is available
    load_checkpoint(args, trainer, epoch_itr)

    # Send a dummy batch to warm the caching allocator
    dummy_batch = data_utils.get_dummy_batch(args.max_tokens, src_dict, tgt_dict)
    trainer.dummy_train_step(dummy_batch)

    # Sanity check
    if args.do_sanity_check:
        print('Performing sanity check...')
        sanity_score = score(args, trainer, datasets['test'], src_dict, tgt_dict, 'test.raw.de')
        DLLogger.log(step='SANITY_CHECK', data={'sanity_check_score': sanity_score}, verbosity=1)

    # Train until the learning rate gets too small or model reaches target score
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    tgt_bleu = args.target_bleu or math.inf
    current_bleu = 0.0
    best_bleu = -1.0
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    run_summary = {'loss': float('inf'),
                   'val_loss': float('inf'),
                   'speed': 0,
                   'accuracy': 0}

    while lr >= args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update and current_bleu < tgt_bleu:
        DLLogger.log(step=trainer.get_num_updates()+1, data={'epoch': epoch_itr.epoch}, verbosity=0)
        # train for one epoch
        train(args, trainer, epoch_itr)
        DLLogger.log(step=trainer.get_num_updates(), data={'walltime': train_meter.sum}, verbosity=1)
        DLLogger.log(step=trainer.get_num_updates(),
                     data={'avg_epoch_loss': trainer.avg_loss_meter.avg}, verbosity=1)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, datasets, valid_subsets)
            valid_bleu = score(args, trainer, datasets[valid_subsets[0]], src_dict, tgt_dict, 'valid.raw.de')
            DLLogger.log(step=trainer.get_num_updates(),
                         data={'val_loss': valid_losses[0], 'val_bleu': valid_bleu}, verbosity=1)

        # Eval BLEU score
        if args.online_eval or (tgt_bleu is not math.inf):
            current_bleu = score(args, trainer, datasets[args.gen_subset], src_dict, tgt_dict, 'test.raw.de')
            DLLogger.log(step=trainer.get_num_updates(), data={'test_bleu': current_bleu}, verbosity=1)
            best_bleu = max(best_bleu, current_bleu)

        run_summary['val_loss'] = min(run_summary['val_loss'], valid_losses[0])
        run_summary['accuracy'] = best_bleu if best_bleu >= 0 else valid_bleu
        run_summary['loss'] = valid_losses[0]
        run_summary['speed'] = trainer.throughput_meter.u_avg

        # Only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

    train_meter.stop()
    run_summary['walltime'] = train_meter.sum
    DLLogger.log(step=(), data=run_summary, verbosity=0)
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

def train(args, trainer, epoch_itr):
    """Train the model for one epoch."""

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr()

    # update parameters every N batches
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
    else:
        update_freq = args.update_freq[-1]

    max_update = args.max_update or math.inf
    num_batches = len(epoch_itr)
    begin = time.time()

    # reset meters
    DLLogger.flush()
    trainer.get_throughput_meter().reset()

    for i, sample in enumerate(itr):
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False, last_step=(i == len(itr)-1))
            continue
        else:
            trainer.train_step(sample, update_params=True, last_step=(i == len(itr)-1))

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_throughput_meter().reset()
            reset_perf_meters()

        if (i+1) % args.log_interval == 0:
            DLLogger.flush()

        if trainer.get_num_updates() >= max_update:
            break

    print('Epoch time:', time.time() - begin)

    # Print epoch stats and reset training meters
    DLLogger.log(step=trainer.get_num_updates(),
                 data={'speed': trainer.get_throughput_meter().avg}, verbosity=0)
    DLLogger.flush()

def validate(args, trainer, datasets, subsets):
    """Evaluate the model on the validation set(s) and return the losses."""

    valid_losses = []
    for subset in subsets:

        if len(subsets) > 1:
            print('Validating on \'{}\' subset'.format(subset))

        # Initialize data iterator
        itr = data.EpochBatchIterator(
            dataset=datasets[subset],
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
            max_positions=args.max_positions,
            required_batch_size_multiple=8,
            seed=args.seed,
            num_shards=args.distributed_world_size,
            shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)

        # reset validation loss meters
        DLLogger.flush()

        subset_losses = []
        for sample in itr:
            loss = trainer.valid_step(sample)
            subset_losses.append(loss)
        subset_loss = sum(subset_losses)/len(subset_losses)

        DLLogger.flush()

        valid_losses.append(subset_loss)
        print(f'Validation loss on subset {subset}: {subset_loss}')

    return valid_losses

def score(args, trainer, dataset, src_dict, tgt_dict, ref_file):

    begin = time.time()

    src_dict = deepcopy(src_dict)  # This is necessary, generation of translations
    tgt_dict = deepcopy(tgt_dict)  # alters target dictionary messing up with the rest of training

    model = trainer.get_model()

    # Initialize data iterator
    itr = data.EpochBatchIterator(
        dataset=dataset,
        max_tokens=None,
        max_sentences=max(8, min(math.ceil(1024/args.distributed_world_size), 128)),
        max_positions=args.max_positions,
        required_batch_size_multiple=8,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    translator = SequenceGenerator(
	[model],
        tgt_dict.get_metadata(),
        maxlen=args.max_target_positions - 1,  # do not include EOS token
        beam_size=args.beam,
	stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
	len_penalty=args.lenpen, unk_penalty=args.unkpen,
	sampling=args.sampling, sampling_topk=args.sampling_topk, minlen=args.min_len,
        use_amp=args.amp,
        )
    # Generate and compute BLEU
    predictions = []
    translations = translator.generate_batched_itr(
            itr, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
            cuda=True, timer=gen_timer, prefix_size=args.prefix_size,
            )

    for sample_id, src_tokens, _, hypos in translations:
        # Process input and grount truth
        src_str = src_dict.string(src_tokens, args.remove_bpe)

        # Process top predictions
        for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
            _, hypo_str, _ = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                align_dict=None,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe
                )

            # Score only the top hypothesis
            if i == 0:
                hypo_str = tokenizer.Tokenizer.detokenize(hypo_str, 'de')
                predictions.append('{}\t{}'.format(sample_id, hypo_str))

    if args.distributed_world_size > 1:
        predictions = _all_gather_predictions(predictions)

    with open(os.path.join(args.data, ref_file), 'r') as reference:
        refs = [reference.readlines()]
    # reducing indexed predictions as strings is more memory efficient than reducing tuples
    predictions = [tuple(item.split('\t')) for item in predictions]
    predictions = [(int(item[0]), item[1]) for item in predictions]
    predictions.sort(key=lambda tup: tup[0])
    predictions = [hypo[1] + ('\n' if hypo[1][-1] != '\n' else '') for hypo in predictions]
    sacrebleu_score = sacrebleu.corpus_bleu(predictions, refs, lowercase=not args.test_cased_bleu).score

    if args.save_predictions:
        os.makedirs(os.path.join(args.save_dir, 'predictions'), exist_ok=True)
        fname = ref_file + '.pred.update_{}'.format(trainer.get_num_updates())
        save_path = os.path.join(args.save_dir, 'predictions', fname)
        with open(save_path, 'w') as f:
            f.write(''.join(predictions))

    DLLogger.log(step=trainer.get_num_updates(),
                 data={'inference tokens/s': float(args.distributed_world_size) / gen_timer.avg},
                 verbosity=0)
    DLLogger.flush()
    if gen_timer.sum != 0:
        print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
            len(predictions),
            gen_timer.n,
            gen_timer.sum,
            len(predictions) / gen_timer.sum,
            float(args.distributed_world_size)/gen_timer.avg
            ))

    print('| Eval completed in: {:.2f}s | {}CASED BLEU {:.2f}'.format(
        time.time()-begin,
        '' if args.test_cased_bleu else 'UN',
        sacrebleu_score
        ))

    return sacrebleu_score

def _all_gather_predictions(predictions):
    ready = False
    all_ready = False
    reduced_predictions = []
    max_size = 65000
    while not all_ready:
        lst_len = len(predictions)
        size = 2000     # some extra space for python stuff
        n = 0
        while n < lst_len:
            str_len = len(predictions[n].encode('utf8')) + 8  # per string pickle overhead
            if size + str_len >= max_size:
                break
            size += str_len
            n += 1
        chunk = predictions[:n]
        predictions = predictions[n:]
        if not predictions:
            ready = True
        chunk = (ready, chunk)
        torch.cuda.synchronize()
        gathered = distributed_utils.all_gather_list(chunk, max_size=65000)
        torch.cuda.synchronize()
        reduced_predictions += [t[1] for t in gathered]
        all_ready = all([t[0] for t in gathered])

    reduced_predictions = [item for sublist in reduced_predictions for item in sublist]

    return reduced_predictions


def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if epoch_itr.epoch % args.save_interval != 0:
        return
    if args.no_save or not distributed_utils.is_master(args):
        return
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = end_of_epoch and not args.no_epoch_checkpoints
    checkpoint_conds['checkpoint_best.pt'] = (
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
    extra_state = {
        'best': save_checkpoint.best,
        'train_iterator': epoch_itr.state_dict(),
        'val_loss': val_loss,
    }
    extra_state.update(save_checkpoint.extra_items)

    checkpoints = [os.path.join(args.save_dir, 'checkpoints', fn)
                   for fn, cond in checkpoint_conds.items() if cond]
    if checkpoints:
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)


def add_extra_items_to_checkpoint(items):
    if not hasattr(save_checkpoint, 'extra_items'):
        save_checkpoint.extra_items = {}
    save_checkpoint.extra_items.update(items)

def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
    os.makedirs(os.path.join(args.save_dir, 'checkpoints'), exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, 'checkpoints', args.restore_file)
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))

            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']


if __name__ == '__main__':
    parser = options.get_training_parser()
    ARGS = options.parse_args_and_arch(parser)

    if ARGS.distributed_world_size > 1:
        distributed_utils.distributed_init(ARGS)

    main(ARGS)