log_helper.py 6.47 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import atexit
import time
import itertools

from collections import OrderedDict

import dllogger
from dllogger import Backend, JSONStreamBackend
from tensorboardX import SummaryWriter


class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.updated = False
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, value):
        self.updated = True
        if isinstance(value, (tuple, list)):
            val = value[0]
            n = value[1]
        else:
            val = value
            n = 1
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    @property
    def value(self):
        return self.avg


class PerformanceMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.updated = False
        self.start = time.time()
        self.n = 0

    def update(self, val=1):
        self.updated = True
        self.n += val

    @property
    def value(self):
        return self.n / self.elapsed_time

    @property
    def elapsed_time(self):
        return time.time() - self.start


METRIC = {'average': AverageMeter, 'performance': PerformanceMeter}


class AggregatorBackend(Backend):
    def __init__(self, verbosity, agg_dict):
        super().__init__(verbosity=verbosity)
        agg_dict = OrderedDict({k: v if isinstance(v, (tuple, list)) else (v,) for k, v in agg_dict.items()})
        self.metrics = OrderedDict({k: [METRIC[x]() for x in v] for k, v in agg_dict.items()})
        self.metrics.flushed = True
        self.step = 0
        self.epoch = 0
        self.start_time = time.time()

    @property
    def log_level(self):
        return self._log_level

    def metadata(self, timestamp, elapsedtime, metric, metadata):
        pass

    def _reset_perf_meter(self, name):
        for agg in self.metrics[name]:
            if isinstance(agg, PerformanceMeter):
                agg.reset()

    def reset_perf_meters(self):
        for name in self.metrics.keys():
            self._reset_perf_meter(name)

    def log(self, timestamp, elapsedtime, step, data):
        self.step = step
        if 'epoch' in data.keys():
            self.epoch = data['epoch']
        for k, v in data.items():
            if k not in self.metrics.keys():
                continue
            self.metrics.flushed = False
            for ag in self.metrics[k]:
                ag.update(v)

    def flush(self):
        if self.metrics.flushed:
            return
        result_string = 'Transformer | epoch {} | step {} |'.format(self.epoch, self.step)
        for name, aggregators in self.metrics.items():
            for agg in aggregators:
                if not agg.updated:
                    continue
                if isinstance(agg, AverageMeter):
                    _name = 'avg ' + name
                elif isinstance(agg, PerformanceMeter):
                    _name = name + '/s'

                result_string += _name + ' {:.3f} |'.format(agg.value)
                agg.reset()

        result_string += 'walltime {:.3f} |'.format(time.time() - self.start_time)
        self.metrics.flushed = True
        print(result_string)


class TensorBoardBackend(Backend):
    def __init__(self, verbosity, log_dir):
        super().__init__(verbosity=verbosity)
        self.summary_writer = SummaryWriter(log_dir=os.path.join(log_dir, 'TB_summary'),
                                            flush_secs=120,
                                            max_queue=200
                                            )
        atexit.register(self.summary_writer.close)

    @property
    def log_level(self):
        return self._log_level

    def metadata(self, timestamp, elapsedtime, metric, metadata):
        pass

    def log(self, timestamp, elapsedtime, step, data):
        if not isinstance(step, int):
            return
        for k, v in data.items():
            self.summary_writer.add_scalar(k, v, step)

    def flush(self):
        pass


def setup_logger(args):
    aggregator_dict = OrderedDict([
        ('loss', 'average'),
        ('weighted_loss', 'average'),
        ('tokens', ('average', 'performance')),
        ('updates', 'performance'),
        ('gnorm', 'average')
    ])
    os.makedirs(args.save_dir, exist_ok=True)
    log_path = os.path.join(args.save_dir, args.stat_file)

    if os.path.exists(log_path):
        for i in itertools.count():
            s_fname = args.stat_file.split('.')
            fname = '.'.join(s_fname[:-1]) + f'_{i}.' + s_fname[-1] if len(s_fname) > 1 else args.stat_file + f'.{i}'
            log_path = os.path.join(args.save_dir, fname)
            if not os.path.exists(log_path):
                break

    if not args.distributed_world_size > 1 or args.distributed_rank == 0:
        dllogger.init(backends=[JSONStreamBackend(verbosity=1, filename=log_path),
                                AggregatorBackend(verbosity=0, agg_dict=aggregator_dict),
                                TensorBoardBackend(verbosity=1, log_dir=args.save_dir)])
    else:
        dllogger.init(backends=[])
    for k, v in vars(args).items():
        dllogger.log(step='PARAMETER', data={k: v}, verbosity=0)

    container_setup_info = get_framework_env_vars()
    dllogger.log(step='PARAMETER', data=container_setup_info, verbosity=0)

    dllogger.metadata('loss', {'unit': 'nat', 'GOAL': 'MINIMIZE', 'STAGE': 'TRAIN'})
    dllogger.metadata('val_loss', {'unit': 'nat', 'GOAL': 'MINIMIZE', 'STAGE': 'VAL'})
    dllogger.metadata('speed', {'unit': 'tokens/s', 'format': ':.3f', 'GOAL': 'MAXIMIZE', 'STAGE': 'TRAIN'})
    dllogger.metadata('accuracy', {'unit': 'bleu', 'format': ':.2f', 'GOAL': 'MAXIMIZE', 'STAGE': 'VAL'})


def get_framework_env_vars():
    return {
        'NVIDIA_PYTORCH_VERSION': os.environ.get('NVIDIA_PYTORCH_VERSION'),
        'PYTORCH_VERSION': os.environ.get('PYTORCH_VERSION'),
        'CUBLAS_VERSION': os.environ.get('CUBLAS_VERSION'),
        'NCCL_VERSION': os.environ.get('NCCL_VERSION'),
        'CUDA_DRIVER_VERSION': os.environ.get('CUDA_DRIVER_VERSION'),
        'CUDNN_VERSION': os.environ.get('CUDNN_VERSION'),
        'CUDA_VERSION': os.environ.get('CUDA_VERSION'),
        'NVIDIA_PIPELINE_ID': os.environ.get('NVIDIA_PIPELINE_ID'),
        'NVIDIA_BUILD_ID': os.environ.get('NVIDIA_BUILD_ID'),
        'NVIDIA_TF32_OVERRIDE': os.environ.get('NVIDIA_TF32_OVERRIDE'),
    }


def reset_perf_meters():
    for backend in dllogger.GLOBAL_LOGGER.backends:
        if isinstance(backend, AggregatorBackend):
            backend.reset_perf_meters()