gather_models.py 9.02 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess
from collections import OrderedDict

import mmcv
import torch
import yaml


def ordered_yaml_dump(data, stream=None, Dumper=yaml.SafeDumper, **kwds):

    class OrderedDumper(Dumper):
        pass

    def _dict_representer(dumper, data):
        return dumper.represent_mapping(
            yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items())

    OrderedDumper.add_representer(OrderedDict, _dict_representer)
    return yaml.dump(data, stream, OrderedDumper, **kwds)


def process_checkpoint(in_file, out_file):
    checkpoint = torch.load(in_file, map_location='cpu')
    # remove optimizer for smaller file size
    if 'optimizer' in checkpoint:
        del checkpoint['optimizer']
    # if it is necessary to remove some sensitive data in checkpoint['meta'],
    # add the code here.
    if torch.__version__ >= '1.6':
        torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
    else:
        torch.save(checkpoint, out_file)
    sha = subprocess.check_output(['sha256sum', out_file]).decode()
    final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
    subprocess.Popen(['mv', out_file, final_file])
    return final_file


def get_final_epoch(config):
    cfg = mmcv.Config.fromfile('./configs/' + config)
    return cfg.runner.max_epochs


def get_real_epoch(config):
    cfg = mmcv.Config.fromfile('./configs/' + config)
    epoch = cfg.runner.max_epochs
    if cfg.data.train.type == 'RepeatDataset':
        epoch *= cfg.data.train.times
    return epoch


def get_final_results(log_json_path, epoch, results_lut):
    result_dict = dict()
    with open(log_json_path, 'r') as f:
        for line in f.readlines():
            log_line = json.loads(line)
            if 'mode' not in log_line.keys():
                continue

            if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
                result_dict['memory'] = log_line['memory']

            if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
                result_dict.update({
                    key: log_line[key]
                    for key in results_lut if key in log_line
                })
                return result_dict


def get_dataset_name(config):
    # If there are more dataset, add here.
    name_map = dict(
        CityscapesDataset='Cityscapes',
        CocoDataset='COCO',
        DeepFashionDataset='Deep Fashion',
        LVISV05Dataset='LVIS v0.5',
        LVISV1Dataset='LVIS v1',
        VOCDataset='Pascal VOC',
        WIDERFaceDataset='WIDER Face')
    cfg = mmcv.Config.fromfile('./configs/' + config)
    return name_map[cfg.dataset_type]


def convert_model_info_to_pwc(model_infos):
    pwc_files = {}
    for model in model_infos:
        cfg_folder_name = osp.split(model['config'])[-2]
        pwc_model_info = OrderedDict()
        pwc_model_info['Name'] = osp.split(model['config'])[-1].split('.')[0]
        pwc_model_info['In Collection'] = 'Please fill in Collection name'
        pwc_model_info['Config'] = osp.join('configs', model['config'])

        # get metadata
        memory = round(model['results']['memory'] / 1024, 1)
        epochs = get_real_epoch(model['config'])
        meta_data = OrderedDict()
        meta_data['Training Memory (GB)'] = memory
        meta_data['Epochs'] = epochs
        pwc_model_info['Metadata'] = meta_data

        # get dataset name
        dataset_name = get_dataset_name(model['config'])

        # get results
        results = []
        # if there are more metrics, add here.
        if 'bbox_mAP' in model['results']:
            metric = round(model['results']['bbox_mAP'] * 100, 1)
            results.append(
                OrderedDict(
                    Task='Object Detection',
                    Dataset=dataset_name,
                    Metrics={'box AP': metric}))
        if 'segm_mAP' in model['results']:
            metric = round(model['results']['segm_mAP'] * 100, 1)
            results.append(
                OrderedDict(
                    Task='Instance Segmentation',
                    Dataset=dataset_name,
                    Metrics={'mask AP': metric}))
        pwc_model_info['Results'] = results

        link_string = 'https://download.openmmlab.com/mmdetection/v2.0/'
        link_string += '{}/{}'.format(model['config'].rstrip('.py'),
                                      osp.split(model['model_path'])[-1])
        pwc_model_info['Weights'] = link_string
        if cfg_folder_name in pwc_files:
            pwc_files[cfg_folder_name].append(pwc_model_info)
        else:
            pwc_files[cfg_folder_name] = [pwc_model_info]
    return pwc_files


def parse_args():
    parser = argparse.ArgumentParser(description='Gather benchmarked models')
    parser.add_argument(
        'root',
        type=str,
        help='root path of benchmarked models to be gathered')
    parser.add_argument(
        'out', type=str, help='output path of gathered models to be stored')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    models_root = args.root
    models_out = args.out
    mmcv.mkdir_or_exist(models_out)

    # find all models in the root directory to be gathered
    raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))

    # filter configs that is not trained in the experiments dir
    used_configs = []
    for raw_config in raw_configs:
        if osp.exists(osp.join(models_root, raw_config)):
            used_configs.append(raw_config)
    print(f'Find {len(used_configs)} models to be gathered')

    # find final_ckpt and log file for trained each config
    # and parse the best performance
    model_infos = []
    for used_config in used_configs:
        exp_dir = osp.join(models_root, used_config)
        # check whether the exps is finished
        final_epoch = get_final_epoch(used_config)
        final_model = 'epoch_{}.pth'.format(final_epoch)
        model_path = osp.join(exp_dir, final_model)

        # skip if the model is still training
        if not osp.exists(model_path):
            continue

        # get the latest logs
        log_json_path = list(
            sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
        log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
        cfg = mmcv.Config.fromfile('./configs/' + used_config)
        results_lut = cfg.evaluation.metric
        if not isinstance(results_lut, list):
            results_lut = [results_lut]
        # case when using VOC, the evaluation key is only 'mAP'
        results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key]
        model_performance = get_final_results(log_json_path, final_epoch,
                                              results_lut)

        if model_performance is None:
            continue

        model_time = osp.split(log_txt_path)[-1].split('.')[0]
        model_infos.append(
            dict(
                config=used_config,
                results=model_performance,
                epochs=final_epoch,
                model_time=model_time,
                log_json_path=osp.split(log_json_path)[-1]))

    # publish model for each checkpoint
    publish_model_infos = []
    for model in model_infos:
        model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
        mmcv.mkdir_or_exist(model_publish_dir)

        model_name = osp.split(model['config'])[-1].split('.')[0]

        model_name += '_' + model['model_time']
        publish_model_path = osp.join(model_publish_dir, model_name)
        trained_model_path = osp.join(models_root, model['config'],
                                      'epoch_{}.pth'.format(model['epochs']))

        # convert model
        final_model_path = process_checkpoint(trained_model_path,
                                              publish_model_path)

        # copy log
        shutil.copy(
            osp.join(models_root, model['config'], model['log_json_path']),
            osp.join(model_publish_dir, f'{model_name}.log.json'))
        shutil.copy(
            osp.join(models_root, model['config'],
                     model['log_json_path'].rstrip('.json')),
            osp.join(model_publish_dir, f'{model_name}.log'))

        # copy config to guarantee reproducibility
        config_path = model['config']
        config_path = osp.join(
            'configs',
            config_path) if 'configs' not in config_path else config_path
        target_cconfig_path = osp.split(config_path)[-1]
        shutil.copy(config_path,
                    osp.join(model_publish_dir, target_cconfig_path))

        model['model_path'] = final_model_path
        publish_model_infos.append(model)

    models = dict(models=publish_model_infos)
    print(f'Totally gathered {len(publish_model_infos)} models')
    mmcv.dump(models, osp.join(models_out, 'model_info.json'))

    pwc_files = convert_model_info_to_pwc(publish_model_infos)
    for name in pwc_files:
        with open(osp.join(models_out, name + '_metafile.yml'), 'w') as f:
            ordered_yaml_dump(pwc_files[name], f, encoding='utf-8')


if __name__ == '__main__':
    main()