pytorch2onnx.py 7.02 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
from functools import partial

import mmcv
import numpy as np
import onnxruntime as rt
import torch
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint

from mmcls.models import build_classifier

torch.manual_seed(3)


def _demo_mm_inputs(input_shape, num_classes):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        input_shape (tuple):
            input batch dimensions
        num_classes (int):
            number of semantic classes
    """
    (N, C, H, W) = input_shape
    rng = np.random.RandomState(0)
    imgs = rng.rand(*input_shape)
    gt_labels = rng.randint(
        low=0, high=num_classes, size=(N, 1)).astype(np.uint8)
    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'gt_labels': torch.LongTensor(gt_labels),
    }
    return mm_inputs


def pytorch2onnx(model,
                 input_shape,
                 opset_version=11,
                 dynamic_export=False,
                 show=False,
                 output_file='tmp.onnx',
                 do_simplify=False,
                 verify=False):
    """Export Pytorch model to ONNX model and verify the outputs are same
    between Pytorch and ONNX.

    Args:
        model (nn.Module): Pytorch model we want to export.
        input_shape (tuple): Use this input shape to construct
            the corresponding dummy input and execute the model.
        opset_version (int): The onnx op version. Default: 11.
        show (bool): Whether print the computation graph. Default: False.
        output_file (string): The path to where we store the output ONNX model.
            Default: `tmp.onnx`.
        verify (bool): Whether compare the outputs between Pytorch and ONNX.
            Default: False.
    """
    model.cpu().eval()

    num_classes = model.head.num_classes
    mm_inputs = _demo_mm_inputs(input_shape, num_classes)

    imgs = mm_inputs.pop('imgs')
    img_list = [img[None, :] for img in imgs]

    # replace original forward function
    origin_forward = model.forward
    model.forward = partial(model.forward, img_metas={}, return_loss=False)
    register_extra_symbolics(opset_version)

    # support dynamic shape export
    if dynamic_export:
        dynamic_axes = {
            'input': {
                0: 'batch',
                2: 'width',
                3: 'height'
            },
            'probs': {
                0: 'batch'
            }
        }
    else:
        dynamic_axes = {}

    with torch.no_grad():
        torch.onnx.export(
            model, (img_list, ),
            output_file,
            input_names=['input'],
            output_names=['probs'],
            export_params=True,
            keep_initializers_as_inputs=True,
            dynamic_axes=dynamic_axes,
            verbose=show,
            opset_version=opset_version)
        print(f'Successfully exported ONNX model: {output_file}')
    model.forward = origin_forward

    if do_simplify:
        from mmcv import digit_version
        import onnxsim

        min_required_version = '0.3.0'
        assert digit_version(mmcv.__version__) >= digit_version(
            min_required_version
        ), f'Requires to install onnx-simplify>={min_required_version}'

        if dynamic_axes:
            input_shape = (input_shape[0], input_shape[1], input_shape[2] * 2,
                           input_shape[3] * 2)
        else:
            input_shape = (input_shape[0], input_shape[1], input_shape[2],
                           input_shape[3])
        imgs = _demo_mm_inputs(input_shape, model.head.num_classes).pop('imgs')
        input_dic = {'input': imgs.detach().cpu().numpy()}
        input_shape_dic = {'input': list(input_shape)}

        onnxsim.simplify(
            output_file,
            input_shapes=input_shape_dic,
            input_data=input_dic,
            dynamic_input_shape=dynamic_export)
    if verify:
        # check by onnx
        import onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)

        # test the dynamic model
        if dynamic_export:
            dynamic_test_inputs = _demo_mm_inputs(
                (input_shape[0], input_shape[1], input_shape[2] * 2,
                 input_shape[3] * 2), model.head.num_classes)
            imgs = dynamic_test_inputs.pop('imgs')
            img_list = [img[None, :] for img in imgs]

        # check the numerical value
        # get pytorch output
        pytorch_result = model(img_list, img_metas={}, return_loss=False)[0]

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        sess = rt.InferenceSession(output_file)
        onnx_result = sess.run(
            None, {net_feed_input[0]: img_list[0].detach().numpy()})[0]
        if not np.allclose(pytorch_result, onnx_result):
            raise ValueError(
                'The outputs are different between Pytorch and ONNX')
        print('The outputs are same between Pytorch and ONNX')


def parse_args():
    parser = argparse.ArgumentParser(description='Convert MMCls to ONNX')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--checkpoint', help='checkpoint file', default=None)
    parser.add_argument('--show', action='store_true', help='show onnx graph')
    parser.add_argument(
        '--verify', action='store_true', help='verify the onnx model')
    parser.add_argument('--output-file', type=str, default='tmp.onnx')
    parser.add_argument('--opset-version', type=int, default=11)
    parser.add_argument(
        '--simplify',
        action='store_true',
        help='Whether to simplify onnx model.')
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[224, 224],
        help='input image size')
    parser.add_argument(
        '--dynamic-export',
        action='store_true',
        help='Whether to export ONNX with dynamic input shape. \
            Defaults to False.')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = mmcv.Config.fromfile(args.config)
    cfg.model.pretrained = None

    # build the model and load checkpoint
    classifier = build_classifier(cfg.model)

    if args.checkpoint:
        load_checkpoint(classifier, args.checkpoint, map_location='cpu')

    # conver model to onnx file
    pytorch2onnx(
        classifier,
        input_shape,
        opset_version=args.opset_version,
        show=args.show,
        dynamic_export=args.dynamic_export,
        output_file=args.output_file,
        do_simplify=args.simplify,
        verify=args.verify)