test_losses.py 6.39 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import pytest
import torch

from mmcls.models import build_loss


def test_asymmetric_loss():
    # test asymmetric_loss
    cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
    label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
    weight = torch.tensor([0.5, 0.5])

    loss_cfg = dict(
        type='AsymmetricLoss',
        gamma_pos=1.0,
        gamma_neg=4.0,
        clip=0.05,
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(3.80845 / 3))

    # test asymmetric_loss with weight
    assert torch.allclose(
        loss(cls_score, label, weight=weight), torch.tensor(3.80845 / 6))

    # test asymmetric_loss without clip
    loss_cfg = dict(
        type='AsymmetricLoss',
        gamma_pos=1.0,
        gamma_neg=4.0,
        clip=None,
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(5.1186 / 3))


def test_cross_entropy_loss():
    with pytest.raises(AssertionError):
        # use_sigmoid and use_soft could not be set simultaneously
        loss_cfg = dict(
            type='CrossEntropyLoss', use_sigmoid=True, use_soft=True)
        loss = build_loss(loss_cfg)

    # test ce_loss
    cls_score = torch.Tensor([[100, -100]])
    label = torch.Tensor([1]).long()
    weight = torch.tensor(0.5)

    loss_cfg = dict(type='CrossEntropyLoss', reduction='mean', loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(200.))
    # test ce_loss with weight
    assert torch.allclose(
        loss(cls_score, label, weight=weight), torch.tensor(100.))

    # test bce_loss
    cls_score = torch.Tensor([[100, -100], [100, -100]])
    label = torch.Tensor([[1, 0], [0, 1]])
    weight = torch.Tensor([0.5, 0.5])

    loss_cfg = dict(
        type='CrossEntropyLoss',
        use_sigmoid=True,
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(50.))
    # test ce_loss with weight
    assert torch.allclose(
        loss(cls_score, label, weight=weight), torch.tensor(25.))

    # test soft_ce_loss
    cls_score = torch.Tensor([[100, -100]])
    label = torch.Tensor([[1, 0], [0, 1]])
    weight = torch.tensor(0.5)

    loss_cfg = dict(
        type='CrossEntropyLoss',
        use_soft=True,
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(100.))
    # test soft_ce_loss with weight
    assert torch.allclose(
        loss(cls_score, label, weight=weight), torch.tensor(50.))


def test_focal_loss():
    # test focal_loss
    cls_score = torch.Tensor([[5, -5, 0], [5, -5, 0]])
    label = torch.Tensor([[1, 0, 1], [0, 1, 0]])
    weight = torch.tensor([0.5, 0.5])

    loss_cfg = dict(
        type='FocalLoss',
        gamma=2.0,
        alpha=0.25,
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(loss(cls_score, label), torch.tensor(0.8522))
    # test focal_loss with weight
    assert torch.allclose(
        loss(cls_score, label, weight=weight), torch.tensor(0.8522 / 2))


def test_label_smooth_loss():
    # test label_smooth_val assertion
    with pytest.raises(AssertionError):
        loss_cfg = dict(type='LabelSmoothLoss', label_smooth_val=1.0)
        build_loss(loss_cfg)

    with pytest.raises(AssertionError):
        loss_cfg = dict(type='LabelSmoothLoss', label_smooth_val='str')
        build_loss(loss_cfg)

    # test reduction assertion
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='LabelSmoothLoss', label_smooth_val=0.1, reduction='unknown')
        build_loss(loss_cfg)

    # test mode assertion
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='LabelSmoothLoss', label_smooth_val=0.1, mode='unknown')
        build_loss(loss_cfg)

    # test original mode label smooth loss
    cls_score = torch.tensor([[1., -1.]])
    label = torch.tensor([0])

    loss_cfg = dict(
        type='LabelSmoothLoss',
        label_smooth_val=0.1,
        mode='original',
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    correct = 0.2269  # from timm
    assert loss(cls_score, label) - correct <= 0.0001

    # test classy_vision mode label smooth loss
    loss_cfg = dict(
        type='LabelSmoothLoss',
        label_smooth_val=0.1,
        mode='classy_vision',
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    correct = 0.2178  # from ClassyVision
    assert loss(cls_score, label) - correct <= 0.0001

    # test multi_label mode label smooth loss
    cls_score = torch.tensor([[1., -1., 1]])
    label = torch.tensor([[1, 0, 1]])

    loss_cfg = dict(
        type='LabelSmoothLoss',
        label_smooth_val=0.1,
        mode='multi_label',
        reduction='mean',
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    smooth_label = torch.tensor([[0.9, 0.1, 0.9]])
    correct = torch.binary_cross_entropy_with_logits(cls_score,
                                                     smooth_label).mean()
    assert torch.allclose(loss(cls_score, label), correct)

    # test label linear combination smooth loss
    cls_score = torch.tensor([[1., -1., 0.]])
    label1 = torch.tensor([[1., 0., 0.]])
    label2 = torch.tensor([[0., 0., 1.]])
    label_mix = label1 * 0.6 + label2 * 0.4

    loss_cfg = dict(
        type='LabelSmoothLoss',
        label_smooth_val=0.1,
        mode='original',
        reduction='mean',
        num_classes=3,
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    smooth_label1 = loss.original_smooth_label(label1)
    smooth_label2 = loss.original_smooth_label(label2)
    label_smooth_mix = smooth_label1 * 0.6 + smooth_label2 * 0.4
    correct = (-torch.log_softmax(cls_score, -1) * label_smooth_mix).sum()

    assert loss(cls_score, label_mix) - correct <= 0.0001

    # test label smooth loss with weight
    cls_score = torch.tensor([[1., -1.], [1., -1.]])
    label = torch.tensor([0, 1])
    weight = torch.tensor([0.5, 0.5])

    loss_cfg = dict(
        type='LabelSmoothLoss',
        reduction='mean',
        label_smooth_val=0.1,
        loss_weight=1.0)
    loss = build_loss(loss_cfg)
    assert torch.allclose(
        loss(cls_score, label, weight=weight),
        loss(cls_score, label) / 2)