test_eval_hook.py 7.36 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import logging
import tempfile
import warnings
from unittest.mock import MagicMock, patch

import mmcv.runner
import pytest
import torch
import torch.nn as nn
from mmcv.runner import obj_from_dict
from torch.utils.data import DataLoader, Dataset

from mmcls.apis import single_gpu_test

# TODO import eval hooks from mmcv and delete them from mmcls
try:
    from mmcv.runner.hooks import EvalHook, DistEvalHook
    use_mmcv_hook = True
except ImportError:
    warnings.warn('DeprecationWarning: EvalHook and DistEvalHook from mmcls '
                  'will be deprecated.'
                  'Please install mmcv through master branch.')
    from mmcls.core import EvalHook, DistEvalHook
    use_mmcv_hook = False


class ExampleDataset(Dataset):

    def __getitem__(self, idx):
        results = dict(img=torch.tensor([1]), img_metas=dict())
        return results

    def __len__(self):
        return 1


class ExampleModel(nn.Module):

    def __init__(self):
        super(ExampleModel, self).__init__()
        self.test_cfg = None
        self.conv = nn.Conv2d(3, 3, 3)

    def forward(self, img, img_metas, test_mode=False, **kwargs):
        return img

    def train_step(self, data_batch, optimizer):
        loss = self.forward(**data_batch)
        return dict(loss=loss)


def test_iter_eval_hook():
    with pytest.raises(TypeError):
        test_dataset = ExampleModel()
        data_loader = [
            DataLoader(
                test_dataset,
                batch_size=1,
                sampler=None,
                num_worker=0,
                shuffle=False)
        ]
        EvalHook(data_loader, by_epoch=False)

    test_dataset = ExampleDataset()
    test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
    loader = DataLoader(test_dataset, batch_size=1)
    model = ExampleModel()
    data_loader = DataLoader(
        test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
    optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
    optimizer = obj_from_dict(optim_cfg, torch.optim,
                              dict(params=model.parameters()))

    # test EvalHook
    with tempfile.TemporaryDirectory() as tmpdir:
        eval_hook = EvalHook(data_loader, by_epoch=False)
        runner = mmcv.runner.IterBasedRunner(
            model=model,
            optimizer=optimizer,
            work_dir=tmpdir,
            logger=logging.getLogger(),
            max_iters=1)
        runner.register_hook(eval_hook)
        runner.run([loader], [('train', 1)], 1)
        test_dataset.evaluate.assert_called_with([torch.tensor([1])],
                                                 logger=runner.logger)


def test_epoch_eval_hook():
    with pytest.raises(TypeError):
        test_dataset = ExampleModel()
        data_loader = [
            DataLoader(
                test_dataset,
                batch_size=1,
                sampler=None,
                num_worker=0,
                shuffle=False)
        ]
        EvalHook(data_loader, by_epoch=True)

    test_dataset = ExampleDataset()
    test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
    loader = DataLoader(test_dataset, batch_size=1)
    model = ExampleModel()
    data_loader = DataLoader(
        test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
    optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
    optimizer = obj_from_dict(optim_cfg, torch.optim,
                              dict(params=model.parameters()))

    # test EvalHook with interval
    with tempfile.TemporaryDirectory() as tmpdir:
        eval_hook = EvalHook(data_loader, by_epoch=True, interval=2)
        runner = mmcv.runner.EpochBasedRunner(
            model=model,
            optimizer=optimizer,
            work_dir=tmpdir,
            logger=logging.getLogger(),
            max_epochs=2)
        runner.register_hook(eval_hook)
        runner.run([loader], [('train', 1)])
        test_dataset.evaluate.assert_called_once_with([torch.tensor([1])],
                                                      logger=runner.logger)


def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
    results = single_gpu_test(model, data_loader)
    return results


@patch('mmcls.apis.multi_gpu_test', multi_gpu_test)
def test_dist_eval_hook():
    with pytest.raises(TypeError):
        test_dataset = ExampleModel()
        data_loader = [
            DataLoader(
                test_dataset,
                batch_size=1,
                sampler=None,
                num_worker=0,
                shuffle=False)
        ]
        DistEvalHook(data_loader, by_epoch=False)

    test_dataset = ExampleDataset()
    test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
    loader = DataLoader(test_dataset, batch_size=1)
    model = ExampleModel()
    data_loader = DataLoader(
        test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
    optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
    optimizer = obj_from_dict(optim_cfg, torch.optim,
                              dict(params=model.parameters()))

    # test DistEvalHook
    with tempfile.TemporaryDirectory() as tmpdir:
        if use_mmcv_hook:
            p = patch('mmcv.engine.multi_gpu_test', multi_gpu_test)
            p.start()
        eval_hook = DistEvalHook(data_loader, by_epoch=False)
        runner = mmcv.runner.IterBasedRunner(
            model=model,
            optimizer=optimizer,
            work_dir=tmpdir,
            logger=logging.getLogger(),
            max_iters=1)
        runner.register_hook(eval_hook)
        runner.run([loader], [('train', 1)])
        test_dataset.evaluate.assert_called_with([torch.tensor([1])],
                                                 logger=runner.logger)
        if use_mmcv_hook:
            p.stop()


@patch('mmcls.apis.multi_gpu_test', multi_gpu_test)
def test_dist_eval_hook_epoch():
    with pytest.raises(TypeError):
        test_dataset = ExampleModel()
        data_loader = [
            DataLoader(
                test_dataset,
                batch_size=1,
                sampler=None,
                num_worker=0,
                shuffle=False)
        ]
        DistEvalHook(data_loader)

    test_dataset = ExampleDataset()
    test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
    loader = DataLoader(test_dataset, batch_size=1)
    model = ExampleModel()
    data_loader = DataLoader(
        test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
    optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
    optimizer = obj_from_dict(optim_cfg, torch.optim,
                              dict(params=model.parameters()))

    # test DistEvalHook
    with tempfile.TemporaryDirectory() as tmpdir:
        if use_mmcv_hook:
            p = patch('mmcv.engine.multi_gpu_test', multi_gpu_test)
            p.start()
        eval_hook = DistEvalHook(data_loader, by_epoch=True, interval=2)
        runner = mmcv.runner.EpochBasedRunner(
            model=model,
            optimizer=optimizer,
            work_dir=tmpdir,
            logger=logging.getLogger(),
            max_epochs=2)
        runner.register_hook(eval_hook)
        runner.run([loader], [('train', 1)])
        test_dataset.evaluate.assert_called_with([torch.tensor([1])],
                                                 logger=runner.logger)
        if use_mmcv_hook:
            p.stop()