formating.py 4.97 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from collections.abc import Sequence

import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from PIL import Image

from ..builder import PIPELINES


def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.
    """
    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(
            f'Type {type(data)} cannot be converted to tensor.'
            'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
            '`Sequence`, `int` and `float`')


@PIPELINES.register_module()
class ToTensor(object):

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            results[key] = to_tensor(results[key])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


@PIPELINES.register_module()
class ImageToTensor(object):

    def __init__(self, keys):
        self.keys = keys

    def __call__(self, results):
        for key in self.keys:
            img = results[key]
            if len(img.shape) < 3:
                img = np.expand_dims(img, -1)
            results[key] = to_tensor(img.transpose(2, 0, 1))
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(keys={self.keys})'


@PIPELINES.register_module()
class Transpose(object):

    def __init__(self, keys, order):
        self.keys = keys
        self.order = order

    def __call__(self, results):
        for key in self.keys:
            results[key] = results[key].transpose(self.order)
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, order={self.order})'


@PIPELINES.register_module()
class ToPIL(object):

    def __init__(self):
        pass

    def __call__(self, results):
        results['img'] = Image.fromarray(results['img'])
        return results


@PIPELINES.register_module()
class ToNumpy(object):

    def __init__(self):
        pass

    def __call__(self, results):
        results['img'] = np.array(results['img'], dtype=np.float32)
        return results


@PIPELINES.register_module()
class Collect(object):
    """Collect data from the loader relevant to the specific task.

    This is usually the last stage of the data loader pipeline. Typically keys
    is set to some subset of "img" and "gt_label".

    Args:
        keys (Sequence[str]): Keys of results to be collected in ``data``.
        meta_keys (Sequence[str], optional): Meta keys to be converted to
            ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
            Default: ``('filename', 'ori_shape', 'img_shape', 'flip',
            'flip_direction', 'img_norm_cfg')``

    Returns:
        dict: The result dict contains the following keys
                - keys in``self.keys``
                - ``img_metas`` if avaliable
    """

    def __init__(self,
                 keys,
                 meta_keys=('filename', 'ori_filename', 'ori_shape',
                            'img_shape', 'flip', 'flip_direction',
                            'img_norm_cfg')):
        self.keys = keys
        self.meta_keys = meta_keys

    def __call__(self, results):
        data = {}
        img_meta = {}
        for key in self.meta_keys:
            if key in results:
                img_meta[key] = results[key]
        data['img_metas'] = DC(img_meta, cpu_only=True)
        for key in self.keys:
            data[key] = results[key]
        return data

    def __repr__(self):
        return self.__class__.__name__ + \
            f'(keys={self.keys}, meta_keys={self.meta_keys})'


@PIPELINES.register_module()
class WrapFieldsToLists(object):
    """Wrap fields of the data dictionary into lists for evaluation.

    This class can be used as a last step of a test or validation
    pipeline for single image evaluation or inference.

    Example:
        >>> test_pipeline = [
        >>>    dict(type='LoadImageFromFile'),
        >>>    dict(type='Normalize',
                    mean=[123.675, 116.28, 103.53],
                    std=[58.395, 57.12, 57.375],
                    to_rgb=True),
        >>>    dict(type='ImageToTensor', keys=['img']),
        >>>    dict(type='Collect', keys=['img']),
        >>>    dict(type='WrapIntoLists')
        >>> ]
    """

    def __call__(self, results):
        # Wrap dict fields into lists
        for key, val in results.items():
            results[key] = [val]
        return results

    def __repr__(self):
        return f'{self.__class__.__name__}()'