base_dataset.py 6.67 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import copy
from abc import ABCMeta, abstractmethod

import mmcv
import numpy as np
from torch.utils.data import Dataset

from mmcls.core.evaluation import precision_recall_f1, support
from mmcls.models.losses import accuracy
from .pipelines import Compose


class BaseDataset(Dataset, metaclass=ABCMeta):
    """Base dataset.

    Args:
        data_prefix (str): the prefix of data path
        pipeline (list): a list of dict, where each element represents
            a operation defined in `mmcls.datasets.pipelines`
        ann_file (str | None): the annotation file. When ann_file is str,
            the subclass is expected to read from the ann_file. When ann_file
            is None, the subclass is expected to read according to data_prefix
        test_mode (bool): in train mode or test mode
    """

    CLASSES = None

    def __init__(self,
                 data_prefix,
                 pipeline,
                 classes=None,
                 ann_file=None,
                 test_mode=False):
        super(BaseDataset, self).__init__()

        self.ann_file = ann_file
        self.data_prefix = data_prefix
        self.test_mode = test_mode
        self.pipeline = Compose(pipeline)
        self.CLASSES = self.get_classes(classes)
        self.data_infos = self.load_annotations()

    @abstractmethod
    def load_annotations(self):
        pass

    @property
    def class_to_idx(self):
        """Map mapping class name to class index.

        Returns:
            dict: mapping from class name to class index.
        """

        return {_class: i for i, _class in enumerate(self.CLASSES)}

    def get_gt_labels(self):
        """Get all ground-truth labels (categories).

        Returns:
            list[int]: categories for all images.
        """

        gt_labels = np.array([data['gt_label'] for data in self.data_infos])
        return gt_labels

    def get_cat_ids(self, idx):
        """Get category id by index.

        Args:
            idx (int): Index of data.

        Returns:
            int: Image category of specified index.
        """

        return self.data_infos[idx]['gt_label'].astype(np.int)

    def prepare_data(self, idx):
        results = copy.deepcopy(self.data_infos[idx])
        return self.pipeline(results)

    def __len__(self):
        return len(self.data_infos)

    def __getitem__(self, idx):
        return self.prepare_data(idx)

    @classmethod
    def get_classes(cls, classes=None):
        """Get class names of current dataset.
        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.

        Returns:
            tuple[str] or list[str]: Names of categories of the dataset.
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

    def evaluate(self,
                 results,
                 metric='accuracy',
                 metric_options=None,
                 logger=None):
        """Evaluate the dataset.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
                Default value is `accuracy`.
            metric_options (dict, optional): Options for calculating metrics.
                Allowed keys are 'topk', 'thrs' and 'average_mode'.
                Defaults to None.
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Defaults to None.
        Returns:
            dict: evaluation results
        """
        if metric_options is None:
            metric_options = {'topk': (1, 5)}
        if isinstance(metric, str):
            metrics = [metric]
        else:
            metrics = metric
        allowed_metrics = [
            'accuracy', 'precision', 'recall', 'f1_score', 'support'
        ]
        eval_results = {}
        results = np.vstack(results)
        gt_labels = self.get_gt_labels()
        num_imgs = len(results)
        assert len(gt_labels) == num_imgs, 'dataset testing results should '\
            'be of the same length as gt_labels.'

        invalid_metrics = set(metrics) - set(allowed_metrics)
        if len(invalid_metrics) != 0:
            raise ValueError(f'metirc {invalid_metrics} is not supported.')

        topk = metric_options.get('topk', (1, 5))
        thrs = metric_options.get('thrs')
        average_mode = metric_options.get('average_mode', 'macro')

        if 'accuracy' in metrics:
            acc = accuracy(results, gt_labels, topk=topk, thrs=thrs)
            if isinstance(topk, tuple):
                eval_results_ = {
                    f'accuracy_top-{k}': a
                    for k, a in zip(topk, acc)
                }
            else:
                eval_results_ = {'accuracy': acc}
            if isinstance(thrs, tuple):
                for key, values in eval_results_.items():
                    eval_results.update({
                        f'{key}_thr_{thr:.2f}': value.item()
                        for thr, value in zip(thrs, values)
                    })
            else:
                eval_results.update(
                    {k: v.item()
                     for k, v in eval_results_.items()})

        if 'support' in metrics:
            support_value = support(
                results, gt_labels, average_mode=average_mode)
            eval_results['support'] = support_value

        precision_recall_f1_keys = ['precision', 'recall', 'f1_score']
        if len(set(metrics) & set(precision_recall_f1_keys)) != 0:
            precision_recall_f1_values = precision_recall_f1(
                results, gt_labels, average_mode=average_mode, thrs=thrs)
            for key, values in zip(precision_recall_f1_keys,
                                   precision_recall_f1_values):
                if key in metrics:
                    if isinstance(thrs, tuple):
                        eval_results.update({
                            f'{key}_thr_{thr:.2f}': value
                            for thr, value in zip(thrs, values)
                        })
                    else:
                        eval_results[key] = values

        return eval_results