dataloader.py 14.7 KB
Newer Older
zhenyi's avatar
zhenyi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import math
from random import shuffle

import cv2
import numpy as np
from PIL import Image
from tensorflow import keras
from tensorflow.keras.applications.imagenet_utils import preprocess_input

from utils.utils import cvtColor


class SSDDatasets(keras.utils.Sequence):
    def __init__(self, annotation_lines, input_shape, anchors, batch_size, num_classes, train, overlap_threshold = 0.5):
        self.annotation_lines   = annotation_lines
        self.length             = len(self.annotation_lines)
        
        self.input_shape        = input_shape
        self.anchors            = anchors
        self.num_anchors        = len(anchors)
        self.batch_size         = batch_size
        self.num_classes        = num_classes
        self.train              = train
        self.overlap_threshold  = overlap_threshold

    def __len__(self):
        return math.ceil(len(self.annotation_lines) / float(self.batch_size))

    def __getitem__(self, index):
        image_data  = []
        box_data    = []
        for i in range(index * self.batch_size, (index + 1) * self.batch_size):  
            i = i % self.length
            #---------------------------------------------------#
            #   训练时进行数据的随机增强
            #   验证时不进行数据的随机增强
            #---------------------------------------------------#
            image, box  = self.get_random_data(self.annotation_lines[i], self.input_shape, random = self.train)
            if len(box)!=0:
                boxes               = np.array(box[:,:4] , dtype=np.float32)
                boxes[:, [0, 2]]    = boxes[:,[0, 2]] / self.input_shape[1]
                boxes[:, [1, 3]]    = boxes[:,[1, 3]] / self.input_shape[0]
                one_hot_label   = np.eye(self.num_classes - 1)[np.array(box[:,4], np.int32)]
                box             = np.concatenate([boxes, one_hot_label], axis=-1)
            box = self.assign_boxes(box)

            image_data.append(image)               
            box_data.append(box)
49
            #print(preprocess_input(np.array(image_data)), np.array(box_data))
zhenyi's avatar
zhenyi committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
            break

        return preprocess_input(np.array(image_data)), np.array(box_data)

    def generate(self):
        i = 0
        while True:
            image_data  = []
            box_data    = []
            for b in range(self.batch_size):
                if i==0:
                    np.random.shuffle(self.annotation_lines)
                #---------------------------------------------------#
                #   训练时进行数据的随机增强
                #   验证时不进行数据的随机增强
                #---------------------------------------------------#
                image, box  = self.get_random_data(self.annotation_lines[i], self.input_shape, random = self.train)
                i           = (i+1) % self.length
                if len(box)!=0:
                    boxes               = np.array(box[:,:4] , dtype=np.float32)
                    boxes[:, [0, 2]]    = boxes[:,[0, 2]] / self.input_shape[1]
                    boxes[:, [1, 3]]    = boxes[:,[1, 3]] / self.input_shape[0]
                    one_hot_label   = np.eye(self.num_classes - 1)[np.array(box[:,4], np.int32)]
                    box             = np.concatenate([boxes, one_hot_label], axis=-1)
                box = self.assign_boxes(box)

                image_data.append(image)               
                box_data.append(box)
            yield preprocess_input(np.array(image_data)), np.array(box_data)

    def rand(self, a=0, b=1):
        return np.random.rand()*(b-a) + a

    def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True):
        line = annotation_line.split()
        #------------------------------#
        #   读取图像并转换成RGB图像
        #------------------------------#
        image   = Image.open(line[0])
        image   = cvtColor(image)
        #------------------------------#
        #   获得图像的高宽与目标高宽
        #------------------------------#
        iw, ih  = image.size
        h, w    = input_shape
        #------------------------------#
        #   获得预测框
        #------------------------------#
        box     = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])

        if not random:
            scale = min(w/iw, h/ih)
            nw = int(iw*scale)
            nh = int(ih*scale)
            dx = (w-nw)//2
            dy = (h-nh)//2

            #---------------------------------#
            #   将图像多余的部分加上灰条
            #---------------------------------#
            image       = image.resize((nw,nh), Image.BICUBIC)
            new_image   = Image.new('RGB', (w,h), (128,128,128))
            new_image.paste(image, (dx, dy))
            image_data  = np.array(new_image, np.float32)

            #---------------------------------#
            #   对真实框进行调整
            #---------------------------------#
            if len(box)>0:
                np.random.shuffle(box)
                box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
                box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
                box[:, 0:2][box[:, 0:2]<0] = 0
                box[:, 2][box[:, 2]>w] = w
                box[:, 3][box[:, 3]>h] = h
                box_w = box[:, 2] - box[:, 0]
                box_h = box[:, 3] - box[:, 1]
                box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box

            return image_data, box
                
        #------------------------------------------#
        #   对图像进行缩放并且进行长和宽的扭曲
        #------------------------------------------#
        new_ar = w/h * self.rand(1-jitter,1+jitter) / self.rand(1-jitter,1+jitter)
        scale = self.rand(.25, 2)
        if new_ar < 1:
            nh = int(scale*h)
            nw = int(nh*new_ar)
        else:
            nw = int(scale*w)
            nh = int(nw/new_ar)
        image = image.resize((nw,nh), Image.BICUBIC)

        #------------------------------------------#
        #   将图像多余的部分加上灰条
        #------------------------------------------#
        dx = int(self.rand(0, w-nw))
        dy = int(self.rand(0, h-nh))
        new_image = Image.new('RGB', (w,h), (128,128,128))
        new_image.paste(image, (dx, dy))
        image = new_image

        #------------------------------------------#
        #   翻转图像
        #------------------------------------------#
        flip = self.rand()<.5
        if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)

        #------------------------------------------#
        #   色域扭曲
        #------------------------------------------#
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand()<.5 else 1/self.rand(1, sat)
        val = self.rand(1, val) if self.rand()<.5 else 1/self.rand(1, val)
        x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
        x[..., 0] += hue*360
        x[..., 0][x[..., 0]>1] -= 1
        x[..., 0][x[..., 0]<0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:,:, 0]>360, 0] = 360
        x[:, :, 1:][x[:, :, 1:]>1] = 1
        x[x<0] = 0
        image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255 # numpy array, 0 to 1

        #---------------------------------#
        #   对真实框进行调整
        #---------------------------------#
        if len(box)>0:
            np.random.shuffle(box)
            box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
            box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
            if flip: box[:, [0,2]] = w - box[:, [2,0]]
            box[:, 0:2][box[:, 0:2]<0] = 0
            box[:, 2][box[:, 2]>w] = w
            box[:, 3][box[:, 3]>h] = h
            box_w = box[:, 2] - box[:, 0]
            box_h = box[:, 3] - box[:, 1]
            box = box[np.logical_and(box_w>1, box_h>1)] 
        
        return image_data, box

    def on_epoch_begin(self):
        shuffle(self.annotation_lines)

    def iou(self, box):
        #---------------------------------------------#
        #   计算出每个真实框与所有的先验框的iou
        #   判断真实框与先验框的重合情况
        #---------------------------------------------#
        inter_upleft    = np.maximum(self.anchors[:, :2], box[:2])
        inter_botright  = np.minimum(self.anchors[:, 2:4], box[2:])

        inter_wh    = inter_botright - inter_upleft
        inter_wh    = np.maximum(inter_wh, 0)
        inter       = inter_wh[:, 0] * inter_wh[:, 1]
        #---------------------------------------------# 
        #   真实框的面积
        #---------------------------------------------#
        area_true = (box[2] - box[0]) * (box[3] - box[1])
        #---------------------------------------------#
        #   先验框的面积
        #---------------------------------------------#
        area_gt = (self.anchors[:, 2] - self.anchors[:, 0])*(self.anchors[:, 3] - self.anchors[:, 1])
        #---------------------------------------------#
        #   计算iou
        #---------------------------------------------#
        union = area_true + area_gt - inter

        iou = inter / union
        return iou

    def encode_box(self, box, return_iou=True, variances = [0.1, 0.1, 0.2, 0.2]):
        #---------------------------------------------#
        #   计算当前真实框和先验框的重合情况
        #   iou [self.num_anchors]
        #   encoded_box [self.num_anchors, 5]
        #---------------------------------------------#
        iou = self.iou(box)
        encoded_box = np.zeros((self.num_anchors, 4 + return_iou))
        
        #---------------------------------------------#
        #   找到每一个真实框,重合程度较高的先验框
        #   真实框可以由这个先验框来负责预测
        #---------------------------------------------#
        assign_mask = iou > self.overlap_threshold

        #---------------------------------------------#
        #   如果没有一个先验框重合度大于self.overlap_threshold
        #   则选择重合度最大的为正样本
        #---------------------------------------------#
        if not assign_mask.any():
            assign_mask[iou.argmax()] = True
        
        #---------------------------------------------#
        #   利用iou进行赋值 
        #---------------------------------------------#
        if return_iou:
            encoded_box[:, -1][assign_mask] = iou[assign_mask]
        
        #---------------------------------------------#
        #   找到对应的先验框
        #---------------------------------------------#
        assigned_anchors = self.anchors[assign_mask]

        #---------------------------------------------#
        #   逆向编码,将真实框转化为ssd预测结果的格式
        #   先计算真实框的中心与长宽
        #---------------------------------------------#
        box_center  = 0.5 * (box[:2] + box[2:])
        box_wh      = box[2:] - box[:2]
        #---------------------------------------------#
        #   再计算重合度较高的先验框的中心与长宽
        #---------------------------------------------#
        assigned_anchors_center = (assigned_anchors[:, 0:2] + assigned_anchors[:, 2:4]) * 0.5
        assigned_anchors_wh     = (assigned_anchors[:, 2:4] - assigned_anchors[:, 0:2])
        
        #------------------------------------------------#
        #   逆向求取ssd应该有的预测结果
        #   先求取中心的预测结果,再求取宽高的预测结果
        #   存在改变数量级的参数,默认为[0.1,0.1,0.2,0.2]
        #------------------------------------------------#
        encoded_box[:, :2][assign_mask] = box_center - assigned_anchors_center
        encoded_box[:, :2][assign_mask] /= assigned_anchors_wh
        encoded_box[:, :2][assign_mask] /= np.array(variances)[:2]

        encoded_box[:, 2:4][assign_mask] = np.log(box_wh / assigned_anchors_wh)
        encoded_box[:, 2:4][assign_mask] /= np.array(variances)[2:4]
        return encoded_box.ravel()

    def assign_boxes(self, boxes):
        #---------------------------------------------------#
        #   assignment分为3个部分
        #   :4      的内容为网络应该有的回归预测结果
        #   4:-1    的内容为先验框所对应的种类,默认为背景
        #   -1      的内容为当前先验框是否包含目标
        #---------------------------------------------------#
        assignment          = np.zeros((self.num_anchors, 4 + self.num_classes + 1))
        assignment[:, 4]    = 1.0
        if len(boxes) == 0:
            return assignment

        # 对每一个真实框都进行iou计算
        encoded_boxes   = np.apply_along_axis(self.encode_box, 1, boxes[:, :4])
        #---------------------------------------------------#
        #   在reshape后,获得的encoded_boxes的shape为:
        #   [num_true_box, num_anchors, 4 + 1]
        #   4是编码后的结果,1为iou
        #---------------------------------------------------#
        encoded_boxes   = encoded_boxes.reshape(-1, self.num_anchors, 5)
        
        #---------------------------------------------------#
        #   [num_anchors]求取每一个先验框重合度最大的真实框
        #---------------------------------------------------#
        best_iou        = encoded_boxes[:, :, -1].max(axis=0)
        best_iou_idx    = encoded_boxes[:, :, -1].argmax(axis=0)
        best_iou_mask   = best_iou > 0
        best_iou_idx    = best_iou_idx[best_iou_mask]
        
        #---------------------------------------------------#
        #   计算一共有多少先验框满足需求
        #---------------------------------------------------#
        assign_num      = len(best_iou_idx)

        # 将编码后的真实框取出
        encoded_boxes   = encoded_boxes[:, best_iou_mask, :]
        #---------------------------------------------------#
        #   编码后的真实框的赋值
        #---------------------------------------------------#
        assignment[:, :4][best_iou_mask] = encoded_boxes[best_iou_idx,np.arange(assign_num),:4]
        #----------------------------------------------------------#
        #   4代表为背景的概率,设定为0,因为这些先验框有对应的物体
        #----------------------------------------------------------#
        assignment[:, 4][best_iou_mask]     = 0
        assignment[:, 5:-1][best_iou_mask]  = boxes[best_iou_idx, 4:]
        #----------------------------------------------------------#
        #   -1表示先验框是否有对应的物体
        #----------------------------------------------------------#
        assignment[:, -1][best_iou_mask]    = 1
        # 通过assign_boxes我们就获得了,输入进来的这张图片,应该有的预测结果是什么样子的
        return assignment