hubconf.py 6.09 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/

Usage:
    import torch
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
"""

import torch


def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen
        device (str, torch.device, None): device to use for model parameters

    Returns:
        YOLOv5 pytorch model
    """
    from pathlib import Path

    from models.yolo import Model
31
32
    from models.experimental import attempt_load
    from utils.general import check_requirements, set_logging
huchen's avatar
huchen committed
33
34
35
    from utils.downloads import attempt_download
    from utils.torch_utils import select_device

36
    file = Path(__file__).resolve()
huchen's avatar
huchen committed
37
38
39
    check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
    set_logging(verbose=verbose)

40
41
    save_dir = Path('') if str(name).endswith('.pt') else file.parent
    path = (save_dir / name).with_suffix('.pt')  # checkpoint path
huchen's avatar
huchen committed
42
43
44
45
    try:
        device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)

        if pretrained and channels == 3 and classes == 80:
46
            model = attempt_load(path, map_location=device)  # download/load FP32 model
huchen's avatar
huchen committed
47
        else:
48
            cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
huchen's avatar
huchen committed
49
50
51
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                ckpt = torch.load(attempt_download(path), map_location=device)  # load
52
                msd = model.state_dict()  # model state_dict
huchen's avatar
huchen committed
53
                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
54
                csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape}  # filter
huchen's avatar
huchen committed
55
56
57
58
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt['model'].names  # set class names attribute
        if autoshape:
59
            model = model.autoshape()  # for file/URI/PIL/cv2/np inputs and NMS
huchen's avatar
huchen committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
        raise Exception(s) from e


def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
    # YOLOv5 custom or local model
    return _create(path, autoshape=autoshape, verbose=verbose, device=device)


def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-nano model https://github.com/ultralytics/yolov5
    return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)


def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-small model https://github.com/ultralytics/yolov5
    return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)


def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-medium model https://github.com/ultralytics/yolov5
    return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)


def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-large model https://github.com/ultralytics/yolov5
    return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)


def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
    return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)


def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)


def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)


def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)


def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)


def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
    return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)


if __name__ == '__main__':
    model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)  # pretrained
    # model = custom(path='path/to/model.pt')  # custom

    # Verify inference
    import cv2
    import numpy as np
    from PIL import Image
131
    from pathlib import Path
huchen's avatar
huchen committed
132
133
134
135
136
137
138
139

    imgs = ['data/images/zidane.jpg',  # filename
            Path('data/images/zidane.jpg'),  # Path
            'https://ultralytics.com/images/zidane.jpg',  # URI
            cv2.imread('data/images/bus.jpg')[:, :, ::-1],  # OpenCV
            Image.open('data/images/bus.jpg'),  # PIL
            np.zeros((320, 640, 3))]  # numpy

140
    results = model(imgs)  # batched inference
huchen's avatar
huchen committed
141
142
    results.print()
    results.save()