"test/srt/lora/test_lora.py" did not exist on "2373faa3171ca6cb00fd8cf8b422ec0017b0bc4a"
pretrained_models.rst 96.8 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

Pretrained models
=======================================================================================================================

Here is a partial list of some of the available pretrained models together with a short presentation of each model.

For the full list, refer to `https://huggingface.co/models <https://huggingface.co/models>`__.

+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Architecture       | Model id                                                   | Details of the model                                                                                                                  |
+====================+============================================================+=======================================================================================================================================+
| BERT               | ``bert-base-uncased``                                      | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on lower-cased English text.                                                                                                |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-uncased``                                     | | 24-layer, 1024-hidden, 16-heads, 336M parameters.                                                                                   |
|                    |                                                            | | Trained on lower-cased English text.                                                                                                |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-cased``                                        | | 12-layer, 768-hidden, 12-heads, 109M parameters.                                                                                    |
|                    |                                                            | | Trained on cased English text.                                                                                                      |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-cased``                                       | | 24-layer, 1024-hidden, 16-heads, 335M parameters.                                                                                   |
|                    |                                                            | | Trained on cased English text.                                                                                                      |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-multilingual-uncased``                         | | (Original, not recommended) 12-layer, 768-hidden, 12-heads, 168M parameters.                                                        |
|                    |                                                            | | Trained on lower-cased text in the top 102 languages with the largest Wikipedias                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`__).                                              |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-multilingual-cased``                           | | (New, **recommended**) 12-layer, 768-hidden, 12-heads, 179M parameters.                                                             |
|                    |                                                            | | Trained on cased text in the top 104 languages with the largest Wikipedias                                                          |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`__).                                              |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-chinese``                                      | | 12-layer, 768-hidden, 12-heads, 103M parameters.                                                                                    |
|                    |                                                            | | Trained on cased Chinese Simplified and Traditional text.                                                                           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-german-cased``                                 | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on cased German text by Deepset.ai                                                                                          |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on deepset.ai website <https://deepset.ai/german-bert>`__).                                                             |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-uncased-whole-word-masking``                  | | 24-layer, 1024-hidden, 16-heads, 336M parameters.                                                                                   |
|                    |                                                            | | Trained on lower-cased English text using Whole-Word-Masking                                                                        |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/bert/#bert>`__).                                                                    |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-cased-whole-word-masking``                    | | 24-layer, 1024-hidden, 16-heads, 335M parameters.                                                                                   |
|                    |                                                            | | Trained on cased English text using Whole-Word-Masking                                                                              |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/bert/#bert>`__).                                                                    |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-uncased-whole-word-masking-finetuned-squad``  | | 24-layer, 1024-hidden, 16-heads, 336M parameters.                                                                                   |
|                    |                                                            | | The ``bert-large-uncased-whole-word-masking`` model fine-tuned on SQuAD                                                             |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see details of fine-tuning in the `example section <https://github.com/huggingface/transformers/tree/master/examples>`__).           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-large-cased-whole-word-masking-finetuned-squad``    | | 24-layer, 1024-hidden, 16-heads, 335M parameters                                                                                    |
|                    |                                                            | | The ``bert-large-cased-whole-word-masking`` model fine-tuned on SQuAD                                                               |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__)                           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-cased-finetuned-mrpc``                         | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | The ``bert-base-cased`` model fine-tuned on MRPC                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__)                           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-german-dbmdz-cased``                           | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on cased German text by DBMDZ                                                                                               |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__).                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``bert-base-german-dbmdz-uncased``                         | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on uncased German text by DBMDZ                                                                                             |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__).                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``cl-tohoku/bert-base-japanese``                           | | 12-layer, 768-hidden, 12-heads, 111M parameters.                                                                                    |
|                    |                                                            | | Trained on Japanese text. Text is tokenized with MeCab and WordPiece and this requires some extra dependencies,                     |
|                    |                                                            | | `fugashi <https://github.com/polm/fugashi>`__ which is a wrapper around `MeCab <https://taku910.github.io/mecab/>`__.               |
|                    |                                                            | | Use ``pip install transformers["ja"]`` (or ``pip install -e .["ja"]`` if you install from source) to install them.                  |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on cl-tohoku repository <https://github.com/cl-tohoku/bert-japanese>`__).                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``cl-tohoku/bert-base-japanese-whole-word-masking``        | | 12-layer, 768-hidden, 12-heads, 111M parameters.                                                                                    |
|                    |                                                            | | Trained on Japanese text. Text is tokenized with MeCab and WordPiece and this requires some extra dependencies,                     |
|                    |                                                            | | `fugashi <https://github.com/polm/fugashi>`__ which is a wrapper around `MeCab <https://taku910.github.io/mecab/>`__.               |
|                    |                                                            | | Use ``pip install transformers["ja"]`` (or ``pip install -e .["ja"]`` if you install from source) to install them.                  |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on cl-tohoku repository <https://github.com/cl-tohoku/bert-japanese>`__).                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``cl-tohoku/bert-base-japanese-char``                      | | 12-layer, 768-hidden, 12-heads, 90M parameters.                                                                                     |
|                    |                                                            | | Trained on Japanese text. Text is tokenized into characters.                                                                        |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on cl-tohoku repository <https://github.com/cl-tohoku/bert-japanese>`__).                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``cl-tohoku/bert-base-japanese-char-whole-word-masking``   | | 12-layer, 768-hidden, 12-heads, 90M parameters.                                                                                     |
|                    |                                                            | | Trained on Japanese text using Whole-Word-Masking. Text is tokenized into characters.                                               |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on cl-tohoku repository <https://github.com/cl-tohoku/bert-japanese>`__).                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``TurkuNLP/bert-base-finnish-cased-v1``                    | | 12-layer, 768-hidden, 12-heads, 125M parameters.                                                                                    |
|                    |                                                            | | Trained on cased Finnish text.                                                                                                      |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on turkunlp.org <http://turkunlp.org/FinBERT/>`__).                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``TurkuNLP/bert-base-finnish-uncased-v1``                  | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on uncased Finnish text.                                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on turkunlp.org <http://turkunlp.org/FinBERT/>`__).                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``wietsedv/bert-base-dutch-cased``                         | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | Trained on cased Dutch text.                                                                                                        |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details on wietsedv repository <https://github.com/wietsedv/bertje/>`__).                                                       |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT                | ``openai-gpt``                                             | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | OpenAI GPT English model                                                                                                            |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT-2              | ``gpt2``                                                   | | 12-layer, 768-hidden, 12-heads, 117M parameters.                                                                                    |
|                    |                                                            | | OpenAI GPT-2 English model                                                                                                          |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``gpt2-medium``                                            | | 24-layer, 1024-hidden, 16-heads, 345M parameters.                                                                                   |
|                    |                                                            | | OpenAI's Medium-sized GPT-2 English model                                                                                           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``gpt2-large``                                             | | 36-layer, 1280-hidden, 20-heads, 774M parameters.                                                                                   |
|                    |                                                            | | OpenAI's Large-sized GPT-2 English model                                                                                            |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``gpt2-xl``                                                | | 48-layer, 1600-hidden, 25-heads, 1558M parameters.                                                                                  |
|                    |                                                            | | OpenAI's XL-sized GPT-2 English model                                                                                               |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Transformer-XL     | ``transfo-xl-wt103``                                       | | 18-layer, 1024-hidden, 16-heads, 257M parameters.                                                                                   |
|                    |                                                            | | English model trained on wikitext-103                                                                                               |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| XLNet              | ``xlnet-base-cased``                                       | | 12-layer, 768-hidden, 12-heads, 110M parameters.                                                                                    |
|                    |                                                            | | XLNet English model                                                                                                                 |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlnet-large-cased``                                      | | 24-layer, 1024-hidden, 16-heads, 340M parameters.                                                                                   |
|                    |                                                            | | XLNet Large English model                                                                                                           |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| XLM                | ``xlm-mlm-en-2048``                                        | | 12-layer, 2048-hidden, 16-heads                                                                                                     |
|                    |                                                            | | XLM English model                                                                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-ende-1024``                                      | | 6-layer, 1024-hidden, 8-heads                                                                                                       |
|                    |                                                            | | XLM English-German model trained on the concatenation of English and German wikipedia                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-enfr-1024``                                      | | 6-layer, 1024-hidden, 8-heads                                                                                                       |
|                    |                                                            | | XLM English-French model trained on the concatenation of English and French wikipedia                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-enro-1024``                                      | | 6-layer, 1024-hidden, 8-heads                                                                                                       |
|                    |                                                            | | XLM English-Romanian Multi-language model                                                                                           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-xnli15-1024``                                    | | 12-layer, 1024-hidden, 8-heads                                                                                                      |
|                    |                                                            | | XLM Model pre-trained with MLM on the `15 XNLI languages <https://github.com/facebookresearch/XNLI>`__.                             |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-tlm-xnli15-1024``                                | | 12-layer, 1024-hidden, 8-heads                                                                                                      |
|                    |                                                            | | XLM Model pre-trained with MLM + TLM on the `15 XNLI languages <https://github.com/facebookresearch/XNLI>`__.                       |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-clm-enfr-1024``                                      | | 6-layer, 1024-hidden, 8-heads                                                                                                       |
|                    |                                                            | | XLM English-French model trained with CLM (Causal Language Modeling) on the concatenation of English and French wikipedia           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-clm-ende-1024``                                      | | 6-layer, 1024-hidden, 8-heads                                                                                                       |
|                    |                                                            | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia           |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-17-1280``                                        | | 16-layer, 1280-hidden, 16-heads                                                                                                     |
|                    |                                                            | | XLM model trained with MLM (Masked Language Modeling) on 17 languages.                                                              |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-mlm-100-1280``                                       | | 16-layer, 1280-hidden, 16-heads                                                                                                     |
|                    |                                                            | | XLM model trained with MLM (Masked Language Modeling) on 100 languages.                                                             |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| RoBERTa            | ``roberta-base``                                           | | 12-layer, 768-hidden, 12-heads, 125M parameters                                                                                     |
|                    |                                                            | | RoBERTa using the BERT-base architecture                                                                                            |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__)                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``roberta-large``                                          | | 24-layer, 1024-hidden, 16-heads, 355M parameters                                                                                    |
|                    |                                                            | | RoBERTa using the BERT-large architecture                                                                                           |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__)                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``roberta-large-mnli``                                     | | 24-layer, 1024-hidden, 16-heads, 355M parameters                                                                                    |
|                    |                                                            | | ``roberta-large`` fine-tuned on `MNLI <http://www.nyu.edu/projects/bowman/multinli/>`__.                                            |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`__)                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilroberta-base``                                     | | 6-layer, 768-hidden, 12-heads, 82M parameters                                                                                       |
|                    |                                                            | | The DistilRoBERTa model distilled from the RoBERTa model `roberta-base` checkpoint.                                                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``roberta-base-openai-detector``                           | | 12-layer, 768-hidden, 12-heads, 125M parameters                                                                                     |
|                    |                                                            | | ``roberta-base`` fine-tuned by OpenAI on the outputs of the 1.5B-parameter GPT-2 model.                                             |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/openai/gpt-2-output-dataset/tree/master/detector>`__)                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``roberta-large-openai-detector``                          | | 24-layer, 1024-hidden, 16-heads, 355M parameters                                                                                    |
|                    |                                                            | | ``roberta-large`` fine-tuned by OpenAI on the outputs of the 1.5B-parameter GPT-2 model.                                            |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/openai/gpt-2-output-dataset/tree/master/detector>`__)                                               |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT         | ``distilbert-base-uncased``                                | | 6-layer, 768-hidden, 12-heads, 66M parameters                                                                                       |
|                    |                                                            | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint                                                   |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilbert-base-uncased-distilled-squad``                | | 6-layer, 768-hidden, 12-heads, 66M parameters                                                                                       |
|                    |                                                            | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer.                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilbert-base-cased``                                  | | 6-layer, 768-hidden, 12-heads, 65M parameters                                                                                       |
|                    |                                                            | | The DistilBERT model distilled from the BERT model `bert-base-cased` checkpoint                                                     |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilbert-base-cased-distilled-squad``                  | | 6-layer, 768-hidden, 12-heads, 65M parameters                                                                                       |
|                    |                                                            | | The DistilBERT model distilled from the BERT model `bert-base-cased` checkpoint, with an additional question answering layer.       |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilgpt2``                                             | | 6-layer, 768-hidden, 12-heads, 82M parameters                                                                                       |
|                    |                                                            | | The DistilGPT2 model distilled from the GPT2 model `gpt2` checkpoint.                                                               |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilbert-base-german-cased``                           | | 6-layer, 768-hidden, 12-heads, 66M parameters                                                                                       |
|                    |                                                            | | The German DistilBERT model distilled from the German DBMDZ BERT model `bert-base-german-dbmdz-cased` checkpoint.                   |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``distilbert-base-multilingual-cased``                     | | 6-layer, 768-hidden, 12-heads, 134M parameters                                                                                      |
|                    |                                                            | | The multilingual DistilBERT model distilled from the Multilingual BERT model `bert-base-multilingual-cased` checkpoint.             |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__)                                     |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CTRL               | ``ctrl``                                                   | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters                                                                                    |
|                    |                                                            | | Salesforce's Large-sized CTRL English model                                                                                         |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CamemBERT          | ``camembert-base``                                         | | 12-layer, 768-hidden, 12-heads, 110M parameters                                                                                     |
|                    |                                                            | | CamemBERT using the BERT-base architecture                                                                                          |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/camembert>`__)                                                 |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| ALBERT             | ``albert-base-v1``                                         | | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters                                                            |
|                    |                                                            | | ALBERT base model                                                                                                                   |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-large-v1``                                        | | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters                                                           |
|                    |                                                            | | ALBERT large model                                                                                                                  |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-xlarge-v1``                                       | | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters                                                           |
|                    |                                                            | | ALBERT xlarge model                                                                                                                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-xxlarge-v1``                                      | | 12 repeating layer, 128 embedding, 4096-hidden, 64-heads, 223M parameters                                                           |
|                    |                                                            | | ALBERT xxlarge model                                                                                                                |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-base-v2``                                         | | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters                                                            |
|                    |                                                            | | ALBERT base model with no dropout, additional training data and longer training                                                     |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-large-v2``                                        | | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters                                                           |
|                    |                                                            | | ALBERT large model with no dropout, additional training data and longer training                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-xlarge-v2``                                       | | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters                                                           |
|                    |                                                            | | ALBERT xlarge model with no dropout, additional training data and longer training                                                   |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``albert-xxlarge-v2``                                      | | 12 repeating layer, 128 embedding, 4096-hidden, 64-heads, 223M parameters                                                           |
|                    |                                                            | | ALBERT xxlarge model with no dropout, additional training data and longer training                                                  |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/google-research/ALBERT>`__)                                                                         |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| T5                 | ``t5-small``                                               | | ~60M parameters with 6-layers, 512-hidden-state, 2048 feed-forward hidden-state, 8-heads,                                           |
|                    |                                                            | | Trained on English text: the Colossal Clean Crawled Corpus (C4)                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``t5-base``                                                | | ~220M parameters with 12-layers, 768-hidden-state, 3072 feed-forward hidden-state, 12-heads,                                        |
|                    |                                                            | | Trained on English text: the Colossal Clean Crawled Corpus (C4)                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``t5-large``                                               | | ~770M parameters with 24-layers, 1024-hidden-state, 4096 feed-forward hidden-state, 16-heads,                                       |
|                    |                                                            | | Trained on English text: the Colossal Clean Crawled Corpus (C4)                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``t5-3B``                                                  | | ~2.8B parameters with 24-layers, 1024-hidden-state, 16384 feed-forward hidden-state, 32-heads,                                      |
|                    |                                                            | | Trained on English text: the Colossal Clean Crawled Corpus (C4)                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``t5-11B``                                                 | | ~11B parameters with 24-layers, 1024-hidden-state, 65536 feed-forward hidden-state, 128-heads,                                      |
|                    |                                                            | | Trained on English text: the Colossal Clean Crawled Corpus (C4)                                                                     |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| XLM-RoBERTa        | ``xlm-roberta-base``                                       | | ~270M parameters with 12-layers, 768-hidden-state, 3072 feed-forward hidden-state, 8-heads,                                         |
|                    |                                                            | | Trained on on 2.5 TB of newly created clean CommonCrawl data in 100 languages                                                       |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``xlm-roberta-large``                                      | | ~550M parameters with 24-layers, 1024-hidden-state, 4096 feed-forward hidden-state, 16-heads,                                       |
|                    |                                                            | | Trained on 2.5 TB of newly created clean CommonCrawl data in 100 languages                                                          |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| FlauBERT           | ``flaubert/flaubert_small_cased``                          | | 6-layer, 512-hidden, 8-heads, 54M parameters                                                                                        |
|                    |                                                            | | FlauBERT small architecture                                                                                                         |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/getalp/Flaubert>`__)                                                                                |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``flaubert/flaubert_base_uncased``                         | | 12-layer, 768-hidden, 12-heads, 137M parameters                                                                                     |
|                    |                                                            | | FlauBERT base architecture with uncased vocabulary                                                                                  |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/getalp/Flaubert>`__)                                                                                |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``flaubert/flaubert_base_cased``                           | | 12-layer, 768-hidden, 12-heads, 138M parameters                                                                                     |
|                    |                                                            | | FlauBERT base architecture with cased vocabulary                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/getalp/Flaubert>`__)                                                                                |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``flaubert/flaubert_large_cased``                          | | 24-layer, 1024-hidden, 16-heads, 373M parameters                                                                                    |
|                    |                                                            | | FlauBERT large architecture                                                                                                         |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/getalp/Flaubert>`__)                                                                                |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Bart               | ``facebook/bart-large``                                    | | 24-layer, 1024-hidden, 16-heads, 406M parameters                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/pytorch/fairseq/tree/master/examples/bart>`_)                                                       |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/bart-base``                                     | | 12-layer, 768-hidden, 16-heads, 139M parameters                                                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/bart-large-mnli``                               | | Adds a 2 layer classification head with 1 million parameters                                                                        |
|                    |                                                            | | bart-large base architecture with a classification head, finetuned on MNLI                                                          |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/bart-large-cnn``                                | | 24-layer, 1024-hidden, 16-heads, 406M parameters       (same as large)                                                              |
|                    |                                                            | | bart-large base architecture finetuned on cnn summarization task                                                                    |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| BARThez            | ``moussaKam/barthez``                                      | | 12-layer,  768-hidden, 12-heads, 216M parameters                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/moussaKam/BARThez>`__)                                                                              |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``moussaKam/mbarthez``                                     | | 24-layer, 1024-hidden, 16-heads, 561M parameters                                                                                    |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DialoGPT           | ``DialoGPT-small``                                         | | 12-layer, 768-hidden, 12-heads, 124M parameters                                                                                     |
|                    |                                                            | | Trained on English text: 147M conversation-like exchanges extracted from Reddit.                                                    |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``DialoGPT-medium``                                        | | 24-layer, 1024-hidden, 16-heads, 355M parameters                                                                                    |
|                    |                                                            | | Trained on English text: 147M conversation-like exchanges extracted from Reddit.                                                    |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``DialoGPT-large``                                         | | 36-layer, 1280-hidden, 20-heads, 774M parameters                                                                                    |
|                    |                                                            | | Trained on English text: 147M conversation-like exchanges extracted from Reddit.                                                    |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Reformer           | ``reformer-enwik8``                                        | | 12-layer, 1024-hidden, 8-heads, 149M parameters                                                                                     |
|                    |                                                            | | Trained on English Wikipedia data - enwik8.                                                                                         |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``reformer-crime-and-punishment``                          | | 6-layer, 256-hidden, 2-heads, 3M parameters                                                                                         |
|                    |                                                            | | Trained on English text: Crime and Punishment novel by Fyodor Dostoyevsky.                                                          |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| MarianMT           | ``Helsinki-NLP/opus-mt-{src}-{tgt}``                       | | 12-layer, 512-hidden, 8-heads, ~74M parameter Machine translation models. Parameter counts vary depending on vocab size.            |
|                    |                                                            | | (see `model list <https://huggingface.co/Helsinki-NLP>`_)                                                                           |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Pegasus            | ``google/pegasus-{dataset}``                               | | 16-layer, 1024-hidden, 16-heads, ~568M parameter, 2.2 GB for summary. `model list <https://huggingface.co/models?search=pegasus>`__ |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Longformer         | ``allenai/longformer-base-4096``                           | | 12-layer, 768-hidden, 12-heads, ~149M parameters                                                                                    |
|                    |                                                            | | Starting from RoBERTa-base checkpoint, trained on documents of max length 4,096                                                     |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``allenai/longformer-large-4096``                          | | 24-layer, 1024-hidden, 16-heads, ~435M parameters                                                                                   |
|                    |                                                            | | Starting from RoBERTa-large checkpoint, trained on documents of max length 4,096                                                    |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| MBart              | ``facebook/mbart-large-cc25``                              | | 24-layer, 1024-hidden, 16-heads, 610M parameters                                                                                    |
|                    |                                                            | | mBART (bart-large architecture) model trained on 25 languages' monolingual corpus                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/mbart-large-en-ro``                             | | 24-layer, 1024-hidden, 16-heads, 610M parameters                                                                                    |
|                    |                                                            | | mbart-large-cc25 model finetuned on WMT english romanian translation.                                                               |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/mbart-large-50``                                | | 24-layer, 1024-hidden, 16-heads,                                                                                                    |
|                    |                                                            | | mBART model trained on 50 languages' monolingual corpus.                                                                            |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/mbart-large-50-one-to-many-mmt``                | | 24-layer, 1024-hidden, 16-heads,                                                                                                    |
|                    |                                                            | | mbart-50-large model finetuned for one (English) to many multilingual machine translation covering 50 languages.                    |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``facebook/mbart-large-50-many-to-many-mmt``               | | 24-layer, 1024-hidden, 16-heads,                                                                                                    |
|                    |                                                            | | mbart-50-large model finetuned for many to many multilingual machine translation covering 50 languages.                             |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Lxmert             | ``lxmert-base-uncased``                                    | | 9-language layers, 9-relationship layers, and 12-cross-modality layers                                                              |
|                    |                                                            | | 768-hidden, 12-heads (for each layer) ~ 228M parameters                                                                             |
|                    |                                                            | | Starting from lxmert-base checkpoint, trained on over 9 million image-text couplets from COCO, VisualGenome, GQA, VQA               |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| Funnel Transformer | ``funnel-transformer/small``                               | | 14 layers: 3 blocks of 4 layers then 2 layers decoder, 768-hidden, 12-heads, 130M parameters                                        |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/small-base``                          | | 12 layers: 3 blocks of 4 layers (no decoder), 768-hidden, 12-heads, 115M parameters                                                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/medium``                              | | 14 layers: 3 blocks 6, 3x2, 3x2 layers then 2 layers decoder, 768-hidden, 12-heads, 130M parameters                                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/medium-base``                         | | 12 layers: 3 blocks 6, 3x2, 3x2 layers(no decoder), 768-hidden, 12-heads, 115M parameters                                           |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/intermediate``                        | | 20 layers: 3 blocks of 6 layers then 2 layers decoder, 768-hidden, 12-heads, 177M parameters                                        |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/intermediate-base``                   | | 18 layers: 3 blocks of 6 layers (no decoder), 768-hidden, 12-heads, 161M parameters                                                 |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/large``                               | | 26 layers: 3 blocks of 8 layers then 2 layers decoder, 1024-hidden, 12-heads, 386M parameters                                       |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/large-base``                          | | 24 layers: 3 blocks of 8 layers (no decoder), 1024-hidden, 12-heads, 358M parameters                                                |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/xlarge``                              | | 32 layers: 3 blocks of 10 layers then 2 layers decoder, 1024-hidden, 12-heads, 468M parameters                                      |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``funnel-transformer/xlarge-base``                         | | 30 layers: 3 blocks of 10 layers (no decoder), 1024-hidden, 12-heads, 440M parameters                                               |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/laiguokun/Funnel-Transformer>`__)                                                                   |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| LayoutLM           | ``microsoft/layoutlm-base-uncased``                        | | 12 layers, 768-hidden, 12-heads, 113M parameters                                                                                    |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/microsoft/unilm/tree/master/layoutlm>`__)                                                           |
+                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``microsoft/layoutlm-large-uncased``                       | | 24 layers, 1024-hidden, 16-heads, 343M parameters                                                                                   |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/microsoft/unilm/tree/master/layoutlm>`__)                                                           |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DeBERTa            | ``microsoft/deberta-base``                                 | | 12-layer, 768-hidden, 12-heads, ~125M parameters                                                                                    |
|                    |                                                            | | DeBERTa using the BERT-base architecture                                                                                            |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/microsoft/DeBERTa>`__)                                                                              |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``microsoft/deberta-large``                                | | 24-layer, 1024-hidden, 16-heads, ~390M parameters                                                                                   |
|                    |                                                            | | DeBERTa using the BERT-large architecture                                                                                           |
|                    |                                                            |                                                                                                                                       |
|                    |                                                            | (see `details <https://github.com/microsoft/DeBERTa>`__)                                                                              |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| SqueezeBERT        | ``squeezebert/squeezebert-uncased``                        | | 12-layer, 768-hidden, 12-heads, 51M parameters, 4.3x faster than bert-base-uncased on a smartphone.                                 |
|                    |                                                            | | SqueezeBERT architecture pretrained from scratch on masked language model (MLM) and sentence order prediction (SOP) tasks.          |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``squeezebert/squeezebert-mnli``                           | | 12-layer, 768-hidden, 12-heads, 51M parameters, 4.3x faster than bert-base-uncased on a smartphone.                                 |
|                    |                                                            | | This is the squeezebert-uncased model finetuned on MNLI sentence pair classification task with distillation from electra-base.      |
|                    +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
|                    | ``squeezebert/squeezebert-mnli-headless``                  | | 12-layer, 768-hidden, 12-heads, 51M parameters, 4.3x faster than bert-base-uncased on a smartphone.                                 |
|                    |                                                            | | This is the squeezebert-uncased model finetuned on MNLI sentence pair classification task with distillation from electra-base.      |
|                    |                                                            | | The final classification layer is removed, so when you finetune, the final layer will be reinitialized.                             |
+--------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+