initialize.py 5.44 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""Model and data parallel groups."""

import torch

from .utils import ensure_divisibility


# Model parallel group that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

# These values enable us to change the mpu sizes on the fly.
_MPU_WORLD_SIZE = None
_MPU_RANK = None


def is_unitialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is None


def initialize_model_parallel(model_parallel_size_):
    """
    Initialize model data parallel groups.

    Arguments:
        model_parallel_size: number of GPUs used to parallelize model.

    Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
    use 2 GPUs to parallelize the model. The present function will
    create 4 model parallel groups and 2 data parallel grous as:
        4 model parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7]
        2 data parallel groups:
            [g0, g2, g4, g6], [g1, g3, g5, g7]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    if torch.distributed.get_rank() == 0:
        print('> initializing model parallel with size {}'.format(
            model_parallel_size_))
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size = torch.distributed.get_world_size()
    model_parallel_size = min(model_parallel_size_, world_size)
    ensure_divisibility(world_size, model_parallel_size)
    rank = torch.distributed.get_rank()

    # Build the data parallel groups.
    global _DATA_PARALLEL_GROUP
    assert _DATA_PARALLEL_GROUP is None, \
        'data parallel group is already initialized'
    for i in range(model_parallel_size):
        ranks = range(i, world_size, model_parallel_size)
        group = torch.distributed.new_group(ranks)
        if i == (rank % model_parallel_size):
            _DATA_PARALLEL_GROUP = group

    # Build the model parallel groups.
    global _MODEL_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is None, \
        'model parallel group is already initialized'
    for i in range(world_size // model_parallel_size):
        ranks = range(i * model_parallel_size,
                      (i + 1) * model_parallel_size)
        group = torch.distributed.new_group(ranks)
        if i == (rank // model_parallel_size):
            _MODEL_PARALLEL_GROUP = group


def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
    if _MODEL_PARALLEL_GROUP is None or _DATA_PARALLEL_GROUP is None:
        return False
    return True


def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, \
        'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


def set_model_parallel_world_size(world_size):
    """Set the model parallel size"""
    global _MPU_WORLD_SIZE
    _MPU_WORLD_SIZE = world_size


def get_model_parallel_world_size():
    """Return world size for the model parallel group."""
    global _MPU_WORLD_SIZE
    if _MPU_WORLD_SIZE is not None:
        return _MPU_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_model_parallel_group())


def set_model_parallel_rank(rank):
    """Set model parallel rank."""
    global _MPU_RANK
    _MPU_RANK = rank


def get_model_parallel_rank():
    """Return my rank for the model parallel group."""
    global _MPU_RANK
    if _MPU_RANK is not None:
        return _MPU_RANK
    return torch.distributed.get_rank(group=get_model_parallel_group())


def get_model_parallel_src_rank():
    """Calculate the global rank corresponding to a local rank zeor
    in the model parallel group."""
    global_rank = torch.distributed.get_rank()
    local_world_size = get_model_parallel_world_size()
    return (global_rank // local_world_size) * local_world_size


def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())


def destroy_model_parallel():
    """Set the groups to none."""
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None