initialize.py 7.38 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron initialization."""

import random
import os

import numpy as np
import torch

from megatron import get_adlr_autoresume
from megatron import get_args
from megatron import get_tensorboard_writer
from megatron import mpu
from megatron.global_vars import set_global_variables
from megatron.mpu import set_model_parallel_rank, set_model_parallel_world_size

import deepspeed


def initialize_megatron(extra_args_provider=None, args_defaults={},
                        ignore_unknown_args=False, allow_no_cuda=False):
    """Set global variables, initialize distributed, and
    set autoresume and random seeds.
    `allow_no_cuda` should not be set unless using megatron for cpu only
    data processing. In general this arg should not be set unless you know
    what you are doing.
    Returns a function to finalize distributed env initialization
    (optionally, only when args.lazy_mpu_init == True)

"""
    if not allow_no_cuda:
        # Make sure cuda is available.
        assert torch.cuda.is_available(), 'Megatron requires CUDA.'

    # Parse args, build tokenizer, and set adlr-autoresume,
    # tensorboard-writer, and timers.
    set_global_variables(extra_args_provider=extra_args_provider,
                         args_defaults=args_defaults,
                         ignore_unknown_args=ignore_unknown_args)

    # torch.distributed initialization
    def finish_mpu_init():
        args = get_args()
        # Pytorch distributed.
        _initialize_distributed()

        # Random seeds for reproducibility.
        if args.rank == 0:
            print('> setting random seeds to {} ...'.format(args.seed))
        _set_random_seed(args.seed)

    args = get_args()
    if  args.lazy_mpu_init:
        args.use_cpu_initialization=True
        # delayed initialization of DDP-related stuff
        # We only set basic DDP globals
        set_model_parallel_world_size(args.model_parallel_size)
        # and return function for external DDP manager to call when it has DDP initialized
        set_model_parallel_rank(args.rank)
        return finish_mpu_init
    else:
        # Megatron's MPU is the master. Complete initialization right away.
        finish_mpu_init()

        # Initialize memory buffers.
        _initialize_mem_buffs()

        # Autoresume.
        _init_autoresume()

        # Write arguments to tensorboard.
        _write_args_to_tensorboard()
        # No continuation function
        return None


def setup_deepspeed_random_and_activation_checkpointing(args):
    '''Optional DeepSpeed Activation Checkpointing features.
    Gives access to partition activations, contiguous memory optimizations
    and cpu checkpointing.

    Activation checkpoint requires keep track of the random states
    and setting the random seed for each MP process. Megatron uses
    mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed
    for keeping track of the random states and setting the random seeds.
    Since they are used in places outside of activation checkpointing,
    we overwrite them to maintain consistency.

    This must be called before all the calls to mpu.model_parallel_cuda_manual_seed
    '''
    num_layers = args.num_layers // args.checkpoint_num_layers
    num_layers = num_layers if args.num_layers % args.checkpoint_num_layers == 0 else num_layers + 1
    if args.split_transformers:
        num_layers *= 2

    deepspeed.checkpointing.configure(
        mpu,
        partition_activations=args.partition_activations,
        contiguous_checkpointing=args.contigious_checkpointing,
        num_checkpoints=num_layers,
        checkpoint_in_cpu=args.checkpoint_in_cpu,
        synchronize=args.synchronize_each_layer,
        profile=args.profile_backward)

    mpu.checkpoint = deepspeed.checkpointing.checkpoint
    mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
    mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed


def _initialize_distributed():
    """Initialize torch.distributed and mpu."""
    args = get_args()

    device_count = torch.cuda.device_count()
    if torch.distributed.is_initialized():

        if args.rank == 0:
            print('torch distributed is already initialized, '
                  'skipping initialization ...', flush=True)
        args.rank = torch.distributed.get_rank()
        args.world_size = torch.distributed.get_world_size()

    else:

        if args.rank == 0:
            print('> initializing torch distributed ...', flush=True)
        # Manually set the device ids.
        if device_count > 0:
            device = args.rank % device_count
            if args.local_rank is not None:
                assert args.local_rank == device, \
                    'expected local-rank to be the same as rank % device-count.'
            else:
                args.local_rank = device
            torch.cuda.set_device(device)
        # Call the init process
        init_method = 'tcp://'
        master_ip = os.getenv('MASTER_ADDR', 'localhost')
        master_port = os.getenv('MASTER_PORT', '6000')
        init_method += master_ip + ':' + master_port
        torch.distributed.init_process_group(
            backend=args.distributed_backend,
            world_size=args.world_size, rank=args.rank,
            init_method=init_method)

    # Set the model-parallel / data-parallel communicators.
    if device_count > 0:
        if mpu.model_parallel_is_initialized():
            print('model parallel is already initialized')
        else:
            mpu.initialize_model_parallel(args.model_parallel_size)

    # Optional DeepSpeed Activation Checkpointing Features
    #
    if args.deepspeed and args.deepspeed_activation_checkpointing:
        setup_deepspeed_random_and_activation_checkpointing(args)

def _init_autoresume():
    """Set autoresume start time."""
    autoresume = get_adlr_autoresume()
    if autoresume:
        torch.distributed.barrier()
        autoresume.init()
        torch.distributed.barrier()


def _set_random_seed(seed):
    """Set random seed for reproducability."""
    if seed is not None and seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.device_count() > 0:
            mpu.model_parallel_cuda_manual_seed(seed)
    else:
        raise ValueError('Seed ({}) should be a positive integer.'.format(seed))


def _write_args_to_tensorboard():
    """Write arguments to tensorboard."""
    args = get_args()
    writer = get_tensorboard_writer()
    if writer:
        for arg in vars(args):
            writer.add_text(arg, str(getattr(args, arg)))


def _initialize_mem_buffs():
    """Initialize manually allocated static memory."""
    args = get_args()

    # Initialize memory for checkpointed activations.
    if args.distribute_checkpointed_activations:
        mpu.init_checkpointed_activations_memory_buffer()