bert_dataset.py 9.38 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT Style dataset."""

import os
import time

import numpy as np
import torch
from torch.utils.data import Dataset

from megatron import get_tokenizer, get_args
from megatron import print_rank_0
from megatron import mpu
from megatron.data.dataset_utils import get_a_and_b_segments
from megatron.data.dataset_utils import truncate_segments
from megatron.data.dataset_utils import create_tokens_and_tokentypes
from megatron.data.dataset_utils import pad_and_convert_to_numpy
from megatron.data.dataset_utils import create_masked_lm_predictions


class BertDataset(Dataset):

    def __init__(self, name, indexed_dataset, data_prefix,
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):

        # Params to store.
        self.name = name
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

        # Dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
                                                    self.seed,
                                                    self.name)

        # Vocab stuff.
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        np_rng = np.random.RandomState(seed=(self.seed + idx))
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,  # needed for padding
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, np_rng)


def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
                         seed,
                         name):
    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
        # First compile and then import.
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
        from megatron.data import helpers
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length - 3,  # account for added tokens
            short_seq_prob,
            seed,
            verbose)
        print_rank_0(' > done building sapmles index maping')
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elasped time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))

    return samples_mapping


def build_training_sample(sample,
                          target_seq_length, max_seq_length,
                          vocab_id_list, vocab_id_to_token_dict,
                          cls_id, sep_id, mask_id, pad_id,
                          masked_lm_prob, np_rng):
    """Biuld training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
              the opper bound whereas the numpy one is exclusive.
    """

    # We assume that we have at least two sentences in the sample
    assert len(sample) > 1
    assert target_seq_length <= max_seq_length

    # Divide sample into two segments (A and B).
    tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng)

    # Truncate to `target_sequence_length`.
    max_num_tokens = target_seq_length
    truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a),
                                  len(tokens_b), max_num_tokens, np_rng)

    # Build tokens and toketypes.
    tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
                                                      cls_id, sep_id)

    # Masking.
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)

    # Padding.
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'text': tokens_np,
        'types': tokentypes_np,
        'labels': labels_np,
        'is_random': int(is_next_random),
        'loss_mask': loss_mask_np,
        'padding_mask': padding_mask_np,
        'truncated': int(truncated)}
    return train_sample