pretrain_gpt2.py 4.93 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain GPT2"""

import torch

from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import get_tokenizer
from megatron import mpu
from megatron.data.gpt2_dataset import build_train_valid_test_datasets
from megatron.model import GPT2Model, GPT2ModelPipe
from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids
from megatron.utils import reduce_losses
from megatron.fp16 import fp32_to_fp16

# pretend this is a great DeepSpeed change too

def model_provider():
    """Build the model."""

    args = get_args()

    print_rank_0('building GPT2 model ...')
    if args.pipe_parallel_size == 0:
        model = GPT2Model(num_tokentypes=0, parallel_output=True)
    else:
        model = GPT2ModelPipe(num_tokentypes=0, parallel_output=True, topology=mpu.get_topology())
        # This is a hack to give us a reference to get_batch_pipe from within training.py
        # We need to call model.set_batch_fn after deepspeed.initialize
        model._megatron_batch_fn = get_batch_pipe

    return model


def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
        args.eod_mask_loss)

    return tokens, labels, loss_mask, attention_mask, position_ids

def get_batch_pipe(data):
    """A modification of get_batch() to work with the latest batch instead of an iterator. """
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
        args.eod_mask_loss)

    # unpack data
    if args.fp16:
        # cast to fp16 because pipeline parallelism skips the FP16 wrapper.
        return fp32_to_fp16((tokens, position_ids, attention_mask)), fp32_to_fp16((labels, loss_mask))
    else:
        return (tokens, position_ids, attention_mask), (labels, loss_mask)


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch generator').start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator)
    timers('batch generator').stop()
    # Forward model.
    losses = model(tokens, position_ids, attention_mask, labels=labels)
    loss_mask = loss_mask.view(-1)
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Reduce loss for logging.
    reduced_loss = reduce_losses([loss])

    return loss, {'lm loss': reduced_loss[0]}


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0('> building train, validation, and test datasets '
                 'for GPT2 ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating GPT2 datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})