pretrain_bert.py 3.75 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT"""

import torch
import torch.nn.functional as F

from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import mpu
from megatron.data.dataset_utils import build_train_valid_test_datasets
from megatron.model import BertModel
from megatron.training import pretrain
from megatron.utils import reduce_losses


def model_provider():
    """Build the model."""

    print_rank_0('building BERT model ...')

    model = BertModel(
        num_tokentypes=2,
        add_binary_head=True,
        parallel_output=True)

    return model


def get_batch(data_iterator):
    """Build the batch."""

    # Items and their type.
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
    padding_mask = data_b['padding_mask'].long()

    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch generator').start()
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
        = get_batch(data_iterator)
    timers('batch generator').stop()

    # Forward model. lm_labels
    lm_loss_, sop_logits = model(tokens, padding_mask,
                                 tokentype_ids=types,
                                 lm_labels=lm_labels)

    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(),
                               sentence_order.view(-1),
                               ignore_index=-1)

    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

    loss = lm_loss + sop_loss

    reduced_losses = reduce_losses([lm_loss, sop_loss])

    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    print_rank_0('> building train, validation, and test datasets '
                 'for BERT ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating BERT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})