training.py 25.7 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain utilities."""

from datetime import datetime
import math
import sys
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

from megatron import get_args
from megatron import get_timers
from megatron import get_tensorboard_writer
from megatron import mpu
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
from megatron.initialize import initialize_megatron
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
from megatron.model.realm_model import ICTBertModel
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import make_data_loader
from megatron.utils import report_memory

import deepspeed


def pretrain(train_valid_test_dataset_provider, model_provider,
             forward_step_func, extra_args_provider=None, args_defaults={}):
    """Main training program.

    This function will run the followings in the order provided:
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
        3) call train_val_test_data_provider to get train/val/test datasets.
        4) train the modle using the forward_step_func.

    Arguments:
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
    """

    # Initalize and get arguments, timers, and Tensorboard writer.
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)

    args = get_args()
    timers = get_timers()

    # Model, optimizer, and learning rate.
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()

    # Data stuff.
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()

    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
    print_rank_0('training ...')

    iteration = 0
    if args.do_train and args.train_iters > 0:
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   valid_data_iterator, model,
                                   iteration, False)

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler)

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
                                   0, True)


def get_model(model_provider_func):
    """Build the model."""
    args = get_args()

    # Build model on cpu.
    model = model_provider_func()

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    if args.deepspeed:
        # DeepSpeed handles CUDA, FP16, and DDP components.
        return model

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
        return model
    if args.DDP_impl == 'local':
        model = LocalDDP(model)
        return model

    raise NotImplementedError('Unknown DDP implementation specified: {}. '
                              'Exiting.'.format(args.DDP_impl))


def get_optimizer(model):
    """Set up the optimizer."""
    args = get_args()

    # Build parameter groups (weight decay and non-decay).
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    if args.cpu_optimizer:
        if args.cpu_torch_adam:
            cpu_adam_optimizer = torch.optim.Adam
        else:
            from deepspeed.ops.adam import DeepSpeedCPUAdam
            cpu_adam_optimizer = DeepSpeedCPUAdam
        optimizer = cpu_adam_optimizer(param_groups,
                                       lr=args.lr,
                                       weight_decay=args.weight_decay)
    else:
        # Use Adam.
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)

    if args.deepspeed:
        # fp16 wrapper is not required for DeepSpeed.
        return optimizer

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale': args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


def get_learning_rate_scheduler(optimizer):
    """Build the learning rate scheduler."""
    args = get_args()

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
    init_step = 0
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
        total_iters=num_iters,
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


def setup_model_and_optimizer(model_provider_func):
    """Setup model and optimizer."""
    args = get_args()

    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)

    if args.deepspeed:
        print_rank_0("DeepSpeed is enabled.")

        model, optimizer, _, lr_scheduler = deepspeed.initialize(
            model=model,
            optimizer=optimizer,
            args=args,
            lr_scheduler=lr_scheduler,
            mpu=mpu if args.pipe_parallel_size == 0 else None,
            dist_init_required=False)

        if args.pipe_parallel_size > 0:
            model.set_batch_fn(model.module._megatron_batch_fn)

    if args.load is not None:
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
    else:
        args.iteration = 0

    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

    if args.iteration == 0 and hasattr(unwrapped_model, 'init_state_dict_from_bert'):
        print("Initializing ICT from pretrained BERT model", flush=True)
        unwrapped_model.init_state_dict_from_bert()

    return model, optimizer, lr_scheduler


def backward_step(optimizer, model, loss):
    """Backward step."""
    args = get_args()
    timers = get_timers()

    # Backward pass.
    timers('backward-backward').start()
    if args.deepspeed:
        model.backward(loss)
    else:
        optimizer.zero_grad(set_grads_to_None=True)
        if args.fp16:
            optimizer.backward(loss, update_master_grads=False)
        else:
            loss.backward()
    timers('backward-backward').stop()

    if args.deepspeed:
        # DeepSpeed backward propagation already addressed all reduce communication.
        # Reset the timer to avoid breaking timer logs below.
        timers('backward-allreduce').reset()
    else:
        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-allreduce').start()
            model.allreduce_params(reduce_after=False,
                                   fp32_allreduce=args.fp32_allreduce)
            timers('backward-allreduce').stop()

    if not args.deepspeed:
        # Update master gradients.
        timers('backward-master-grad').start()
        if args.fp16:
            optimizer.update_master_grads()
        timers('backward-master-grad').stop()

        # Clipping gradients helps prevent the exploding gradient.
        timers('backward-clip-grad').start()
        if args.clip_grad > 0:
            if not args.fp16:
                mpu.clip_grad_norm(model.parameters(), args.clip_grad)
            else:
                optimizer.clip_master_grads(args.clip_grad)
        timers('backward-clip-grad').stop()


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Pipeline parallelism schedules forward/backward/step
    if args.pipe_parallel_size > 0:
        return train_step_pipe(model, data_iterator)

    # Forward model for one step.
    timers('forward').start()
    loss, loss_reduced = forward_step_func(data_iterator, model)
    timers('forward').stop()

    # Calculate gradients, reduce across processes, and clip.
    timers('backward').start()
    backward_step(optimizer, model, loss)
    timers('backward').stop()

    # Update parameters.
    skipped_iter = 0
    timers('optimizer').start()
    if args.deepspeed:
        model.step()
    else:
        optimizer.step()
        # Update learning rate.
        if not (args.fp16 and optimizer.overflow):
            lr_scheduler.step()
        else:
            skipped_iter = 1
    timers('optimizer').stop()

    return loss_reduced, skipped_iter

def train_step_pipe(model, data_iterator):
    """Single training step with DeepSpeed's pipeline parallel engine. """
    args = get_args()
    timers = get_timers()

    assert args.deepspeed
    loss = model.train_batch(data_iter=data_iterator)
    loss_dict = {'lm loss': loss}
    if args.fp16 and model.optimizer.overflow:
        skipped_iter = 1
    else:
        skipped_iter = 0

    # Don't break Megatron's timers because we changed code paths.
    for t in ['forward', 'backward', 'allreduce', 'optimizer', 'batch generator',
              'data loader']:
        timers(t).reset()
    return loss_dict, skipped_iter



def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
                 loss_scale, report_memory_flag, skipped_iter):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()

    # Update losses.
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
    got_nan_key = 'got nan'

    got_nan = False
    for key in loss_dict:
        if not skipped_iter:
            total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)

    # Logging.
    timers_to_log = []

    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('backward-backward')
    add_to_logging('backward-allreduce')
    add_to_logging('backward-master-grad')
    add_to_logging('backward-clip-grad')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
        for key in total_loss_dict:
            if key not in [skipped_iters_key, got_nan_key]:
                avg = total_loss_dict[key] / float(num_iterations)
                log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
        total_loss_dict[skipped_iters_key] = 0
        total_loss_dict[got_nan_key] = 0
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


def train(forward_step_func, model, optimizer, lr_scheduler,
          train_data_iterator, valid_data_iterator):
    """Train the model function."""
    args = get_args()
    timers = get_timers()

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
                                             lr_scheduler)
        iteration += 1

        # Logging.
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.cur_scale if args.deepspeed else optimizer.loss_scale
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
                                          iteration, loss_scale,
                                          report_memory_flag, skipped_iter)

        # Autoresume
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
            check_adlr_autoresume_termination(iteration, model, optimizer,
                                              lr_scheduler)

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint(iteration, model, optimizer, lr_scheduler)

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
                                       valid_data_iterator, model,
                                       iteration, False)

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()

    return iteration


def evaluate(forward_step_func, data_iterator, model, verbose=False):
    """Evaluation."""
    args = get_args()

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
            _, loss_dict = forward_step_func(data_iterator, model)

            # When contiguous memory optimizations are enabled, the buffers
            # allocated by the optimizations are deallocated during backward pass
            # in the absence of backward pass the buffers should be reset after each
            # forward pass
            if args.deepspeed and args.deepspeed_activation_checkpointing:
                deepspeed.checkpointing.reset()

            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
                    loss_dict[key]
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
                               iteration, verbose=False):
    """Helper function to evaluate and dump results on screen."""
    writer = get_tensorboard_writer()

    # Pipeline parallelism needs eval_batch() instead of a simple forward().
    args = get_args()
    if args.pipe_parallel_size > 0:
        def _eval_helper(data_iter, pipe_model):
            loss = model.eval_batch(data_iter)
            return None, {'lm loss' : loss}
        forward_step_func = _eval_helper

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
    args = get_args()

    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')

    # Ensure only the first/last pipeline stages have data loaders
    if args.pipe_parallel_size > 0:
        is_first_stage = mpu.get_pipe_parallel_rank() == 0
        is_last_stage = mpu.get_pipe_parallel_rank() == mpu.get_pipe_parallel_world_size() - 1
        pipe_load = is_first_stage or is_last_stage
    else:
        pipe_load = True

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0 and pipe_load:
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
        global_batch_size = args.batch_size * data_parallel_size * args.gas

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    if args.pipe_parallel_size > 0:
        # Only first/last pipeline stages have data loaders, so pipeline parallelism should
        # broadcast globally instead of just the model parallel group.
        torch.distributed.broadcast(flags, src=0)
    else:
        torch.distributed.broadcast(flags,
                                    mpu.get_model_parallel_src_rank(),
                                    group=mpu.get_model_parallel_group())
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Shift the start iterations.
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
            len(train_dataloader)
        print_rank_0('setting training data start iteration to {}'.
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
        start_iter_val = (args.iteration // args.eval_interval) * \
            args.eval_iters
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
            len(valid_dataloader)
        print_rank_0('setting validation data start iteration to {}'.
                     format(valid_dataloader.batch_sampler.start_iter))

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
    else:
        train_data_iterator = None

    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
    else:
        valid_data_iterator = None

    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
    else:
        test_data_iterator = None

    return train_data_iterator, valid_data_iterator, test_data_iterator