transformer.py 23.3 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import torch
import torch.nn.functional as F

from megatron import get_args
from megatron import mpu
from megatron.mpu import LayerNorm
from megatron.module import MegatronModule
from megatron.checkpointing import get_checkpoint_version
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import openai_gelu, erf_gelu

import deepspeed

# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
    Transformer takes input of size [s, b, h] and returns a
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

    def __init__(self, init_method, output_layer_init_method):
        super(ParallelMLP, self).__init__()
        args = get_args()

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
            args.hidden_size,
            4 * args.hidden_size,
            gather_output=False,
            init_method=init_method,
            skip_bias_add=True)

        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
            4 * args.hidden_size,
            args.hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method,
            skip_bias_add=True)
         

    def forward(self, hidden_states):

        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)

        if self.bias_gelu_fusion:
            intermediate_parallel = \
                    bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias


class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """

    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
        super(ParallelSelfAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16

        self.attention_mask_func = attention_mask_func
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)

        # Per attention head and per partition values.
        world_size = mpu.get_model_parallel_world_size()
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
        self.hidden_size_per_attention_head = mpu.divide(
            args.hidden_size, args.num_attention_heads)
        self.num_attention_heads_per_partition = mpu.divide(
            args.num_attention_heads, world_size)

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
            args.hidden_size,
            3 * args.hidden_size,
            gather_output=False,
            init_method=init_method)

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16,
            args.scaled_upper_triang_masked_softmax_fusion,
            args.scaled_masked_softmax_fusion,
            self.attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)

        # Output.
        self.dense = mpu.RowParallelLinear(
            args.hidden_size,
            args.hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method,
            skip_bias_add=True)


        if deepspeed.checkpointing.is_configured():
            global get_cuda_rng_tracker, checkpoint
            get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
            checkpoint = deepspeed.checkpointing.checkpoint

    def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first):
        input_shape = mixed_layer.size();
        if num_splits_first:
            """[s, b, num_splits * np * hn] 
            -->(view) [s, b, num_splits, np, hn] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

            intermediate_shape = input_shape[:-1] +\
                (num_splits, self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-2, -3).contiguous()
        else:
            """[s, b, np * hn * num_splits] 
            -->(view) [s, b, np, hn, num_splits] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

            intermediate_shape = input_shape[:-1] +\
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head, num_splits)

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
        mixed_layer = mixed_layer.view(*input_shape)
        
        return mixed_layer

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [sq, b, h]

        # =====================
        # Query, Key, and Value
        # =====================

        # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
        mixed_x_layer, _ = self.query_key_value(hidden_states)

        checkpoint_version = get_checkpoint_version()
        if checkpoint_version is not None:
           if checkpoint_version == 0:
               # [s, b, (3 * np * hn)] --> [s, b, (np * 3 * hn)]
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, True)
           elif checkpoint_version == 1.0:
               # [s, b, (np * hn * 3)] --> [s, b, (np * 3 * hn)]
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, False)

        # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
        new_tensor_shape = mixed_x_layer.size()[:-1] + \
            (self.num_attention_heads_per_partition,
             3 * self.hidden_size_per_attention_head)
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
        (query_layer,
         key_layer,
         value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)

        # ==================================
        # Adjust key and value for inference
        # ==================================

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
                                   key_layer), dim=0)
            value_layer = torch.cat((past_value.type_as(value_layer),
                                     value_layer), dim=0)
        if get_key_value:
            present = (key_layer, value_layer)


        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
        
        # [b, np, sq, sk]
        output_size = (query_layer.size(1), 
                       query_layer.size(2), 
                       query_layer.size(0), 
                       key_layer.size(0))
        
        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting result tensor: [b * np, sq, sk]
        matmul_result = torch.empty(
            output_size[0]*output_size[1], 
            output_size[2], 
            output_size[3],
            dtype=query_layer.dtype, 
            device=torch.cuda.current_device())

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(matmul_result, 
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0,1).transpose(1, 2),  #[b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)


        # ==================================================
        # Update attention mask for inference. [b, np, sq, sk]
        # ==================================================

        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
                        attention_scores.size(3) - 1,
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]


        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)


        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1), 
                       value_layer.size(2), 
                       query_layer.size(0), 
                       value_layer.size(3)) 

        # change view [sk, b * np, hn] 
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)
        
        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
        
        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0,1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)


        # =================
        # Output. [sq, b, h]
        # =================

        output, bias = self.dense(context_layer)

        if get_key_value:
            output = [output, present]

        return output, bias


def bias_dropout_add(x, bias, residual, prob, training) :
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
def bias_dropout_add_fused_train(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
def bias_dropout_add_fused_inference(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """

    def __init__(self, attention_mask_func, init_method, 
                 output_layer_init_method, layer_number):
        args = get_args()

        super(ParallelTransformerLayer, self).__init__()
        self.layer_number = layer_number

        self.apply_residual_connection_post_layernorm \
            = args.apply_residual_connection_post_layernorm

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
            args.hidden_size,
            eps=args.layernorm_epsilon)

        # Self attention.
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
            args.hidden_size,
            eps=args.layernorm_epsilon)

        # MLP
        self.mlp = ParallelMLP(init_method,
                               output_layer_init_method)

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output, attention_bias = \
            self.attention(layernorm_output,
                           attention_mask,
                           layer_past=layer_past,
                           get_key_value=get_key_value)

        if get_key_value:
            attention_output, presents = attention_output
    
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        # jit scripting for a nn.module (with dropout) is not 
        # trigerring the fusion kernel. For now, we use two 
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
        else:
            bias_dropout_add_func = get_bias_dropout_add(self.training)

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output, mlp_bias = self.mlp(layernorm_output)
        
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = layernorm_input

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

        if get_key_value:
            output = [output, presents]

        return output

class ParallelTransformerLayerPipe(ParallelTransformerLayer):
    """Extends ParallelTransformerLayer to forward attention_mask through the pipeline. """
    def forward(self, args):
        hidden_states, attention_mask = args[0], args[1]
        return super().forward(*args), attention_mask

class ParallelTransformer(MegatronModule):
    """Transformer class."""

    def __init__(self, attention_mask_func,
                 init_method, output_layer_init_method):
        super(ParallelTransformer, self).__init__()
        args = get_args()

        # Store activation checkpoiting flag.
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers

        # Number of layers:
        self.num_layers = args.num_layers
        self.num_unique_layers = args.num_unique_layers
        if self.num_unique_layers is None:
            self.num_unique_layers = self.num_layers
        assert self.num_layers % self.num_unique_layers == 0, \
            'number of layers should be divisible by number of unique layers'
        self.param_sharing_style = args.param_sharing_style

        # Transformer layers.
        def build_layer(layer_number):
            return ParallelTransformerLayer(
                attention_mask_func, init_method,
                output_layer_init_method, layer_number)
        self.layers = torch.nn.ModuleList(
            [build_layer(i + 1) for i in range(self.num_unique_layers)])

        # Print layer ordering.
        if self.num_layers != self.num_unique_layers:
            if torch.distributed.get_rank() == 0:
                print('> will be using the following layer ordering:')
                for i in range(self.num_layers):
                    print('   layer id: {:3d} --> unique layer id: '
                          '{:3d}'.format(i, self._get_layer_index(i)),
                          flush=True)

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(
            args.hidden_size,
            eps=args.layernorm_epsilon)

        if deepspeed.checkpointing.is_configured():
            global get_cuda_rng_tracker, checkpoint
            get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
            checkpoint = deepspeed.checkpointing.checkpoint

    def _get_layer_index(self, layer_number):
        if self.param_sharing_style == 'grouped':
            return layer_number % self.num_unique_layers
        if self.param_sharing_style == 'spaced':
            return layer_number // (self.num_layers // self.num_unique_layers) 
        assert False, 'should not be here'

    def _get_layer(self, layer_number):
        return self.layers[self._get_layer_index(layer_number)]

    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
                for index in range(start, end):
                    layer = self._get_layer(index)
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

        # Make sure memory is freed.
        mpu.reset_checkpointed_activations_memory_buffer()
        l = 0
        while l < self.num_layers:
            hidden_states = mpu.checkpoint(
                custom(l, l + self.checkpoint_num_layers),
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

        # data format change to avoid explicit tranposes : [b s h] --> [s b h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
            for index in range(self.num_layers):
                layer = self._get_layer(index)
                past = None
                if layer_past is not None:
                    past = layer_past[index]
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)
        
        # reverting data format change [s b h] --> [b s h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
        if get_key_value:
            output = [output, presents]

        return output