dataset.py 12.5 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# __AUTHOR__    :   SAKSHAM SINGHAL
# __EMAIL__     :   SAKSINGH@MICROSOFT.COM

import torch
import os
from torch.utils.data import DataLoader, Dataset
from enum import IntEnum
from random import choice
import random
import collections
import time

from turing.utils import namedtorchbatch
from turing.text import mask, torch_long, PAD
from turing.sources import QueryPassageDataset, QueryInstanceDataset, \
    PretrainingDataCreator, TokenInstance, QueryPassageFineTuningDataset, \
    WikiNBookCorpusPretrainingDataCreator, CleanBodyDataCreator, \
    NumpyPretrainingDataCreator
from turing.sources import WikiPretrainingDataCreator
from pytorch_pretrained_bert.tokenization import BertTokenizer


class BatchType(IntEnum):
    RANKING_BATCH = 0
    QP_BATCH = 1
    PRETRAIN_BATCH = 2


class PretrainDataType(IntEnum):
    NUMPY = 0
    VALIDATION = 1


MaskedLMInstance = collections.namedtuple("MaskedLMInstance",
                                          ["index", "label"])

QABatch = collections.namedtuple(
    'QABatch', ['input_ids', 'input_mask', 'sequence_ids', 'label'])

RankingBatch = collections.namedtuple(
    'RankingBatch', ['input_ids', 'input_mask', 'sequence_ids', 'label'])

PretrainBatch = collections.namedtuple('PreTrainBatch', [
    'input_ids', 'input_mask', 'sequence_ids', 'is_next_label',
    'masked_lm_output'
])


class BertJobType(IntEnum):
    """Enumerates the various tasks that we will be running
    """
    QA_TASK = 0  # This is Q-P pair prediction
    MLM = 1  # Masking LM for captions data
    NSP = 1  # Next Sentence Prediction task


def get_random_partition(data_directory, index):
    partitions = [
        os.path.join(data_directory, x) for x in os.listdir(data_directory)
    ]
    partitions = sorted(partitions)
    i = index % len(partitions)
    return partitions[i]


def map_to_torch(encoding):
    encoding = torch_long(encoding)
    encoding.requires_grad_(False)
    return encoding


def map_to_torch_float(encoding):
    encoding = torch.FloatTensor(encoding)
    encoding.requires_grad_(False)
    return encoding


def map_to_torch_half(encoding):
    encoding = torch.HalfTensor(encoding)
    encoding.requires_grad_(False)
    return encoding


def encode_sequence(seqA, seqB, max_seq_len, tokenizer):
    seqA = ["[CLS]"] + seqA + ["[SEP]"]
    seqB = seqB + ["[SEP]"]

    input_tokens = seqA + seqB
    input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
    sequence_ids = [0] * len(seqA) + [1] * len(seqB)
    input_mask = [1] * len(input_ids)

    while len(input_ids) < max_seq_len:
        input_ids.append(PAD)
        sequence_ids.append(PAD)
        input_mask.append(PAD)

    return (map_to_torch(input_ids), map_to_torch(input_mask),
            map_to_torch(sequence_ids))


def truncate_input_sequence(tokens_a, tokens_b, max_num_tokens):
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_num_tokens:
            break

        trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
        assert len(trunc_tokens) >= 1

        # We want to sometimes truncate from the front and sometimes from the
        # back to add more randomness and avoid biases.
        if random.random() < 0.5:
            del trunc_tokens[0]
        else:
            trunc_tokens.pop()


class QADataset(Dataset):
    def __init__(self, tokenizer: BertTokenizer, folder: str, logger,
                 max_seq_len, index):
        self.tokenizer = tokenizer
        self.dir_path = folder
        self.max_seq_len = max_seq_len
        self.len = 0

        path = get_random_partition(self.dir_path, index)

        logger.info(f"Loading Query-Passage Pairs from {path}")
        self.data = QueryPassageDataset(path)
        self.len = len(self.data)
        logger.info(
            f"Data Loading Completed for Query-Passage Pairs from {path} with {self.len} samples."
        )

    def __len__(self):
        return self.len

    def __getitem__(self, index):
        i = index % self.len

        query, passage, label = self.data.all_pairs[i]
        label = float(label)

        # sample_choice = choice([0, 1])

        # if sample_choice == 0:  # generate negative sample
        #     query, passage = self.data.all_pairs[i][0], self.data.all_pairs[i+1][1]
        # else:  # generate positive sample
        #     query, passage = self.data.all_pairs[i]

        query_tokens = self.tokenizer.tokenize(query)
        passage_tokens = self.tokenizer.tokenize(passage)

        if (len(query_tokens) > self.max_seq_len // 2):
            query_tokens = query_tokens[0:self.max_seq_len // 2]

        max_passage_tokens = self.max_seq_len - \
            len(query_tokens) - 3  # Removing 3 for SEP and CLS

        if (len(passage_tokens) > max_passage_tokens):
            passage_tokens = passage_tokens[0:max_passage_tokens]

        input_ids, input_mask, sequence_ids = encode_sequence(
            query_tokens, passage_tokens, self.max_seq_len, self.tokenizer)
        return tuple([
            map_to_torch([BatchType.QP_BATCH]), input_ids, input_mask,
            sequence_ids,
            map_to_torch_float([label])
        ])
        # return QABatch(input_ids=input_ids, input_mask=input_mask, sequence_ids=sequence_ids, label=map_to_torch([label]))


class QAFinetuningDataset(QADataset):
    def __init__(self, tokenizer: BertTokenizer, file_path, logger,
                 max_seq_len):
        self.tokenizer = tokenizer
        self.path = file_path
        self.max_seq_len = max_seq_len
        self.len = 0

        logger.info(f"Loading Query-Passage Pairs from {self.path}")
        self.data = QueryPassageFineTuningDataset(self.path)
        self.len = len(self.data)
        logger.info(
            f"Data Loading Completed for Finetuning Query-Passage Pairs from {self.path} with {self.len} samples."
        )


class RankingDataset(Dataset):
    def __init__(self,
                 tokenizer: BertTokenizer,
                 folder: str,
                 logger,
                 max_seq_len,
                 index,
                 fp16=False):
        self.tokenizer = tokenizer
        self.dir_path = folder
        self.max_seq_len = max_seq_len
        self.len = 0
        self.fp16 = fp16

        path = get_random_partition(self.dir_path, index)

        logger.info(f"Loading Query-Instance Pairs from {path}")
        self.data = QueryInstanceDataset(path)
        self.len = len(self.data)
        logger.info(
            f"Data Loading Completed for Query-Instance Pairs from {path} with {self.len} samples."
        )

    def __len__(self):
        return self.len

    def __getitem__(self, index):
        i = index % self.len

        query, instance, label = self.data.all_pairs[i]
        label = float(label)

        instances = instance.split('<sep>')

        query_tokens = self.tokenizer.tokenize(query)
        instances = [self.tokenizer.tokenize(x) for x in instances]
        instance_tokens = []
        for x in instances:
            instance_tokens.extend(x)
            instance_tokens.append('[SEP]')

        instance_tokens = instance_tokens[:-1]
        # instance_tokens = self.tokenizer.tokenize(instance)

        if (len(query_tokens) > self.max_seq_len // 2):
            query_tokens = query_tokens[0:self.max_seq_len // 2]

        max_instance_tokens = self.max_seq_len - \
            len(query_tokens) - 3  # Removing 3 for SEP and CLS

        if (len(instance_tokens) > max_instance_tokens):
            instance_tokens = instance_tokens[0:max_instance_tokens]

        input_ids, input_mask, sequence_ids = encode_sequence(
            query_tokens, instance_tokens, self.max_seq_len, self.tokenizer)
        return tuple([
            map_to_torch([BatchType.RANKING_BATCH]), input_ids, input_mask,
            sequence_ids,
            map_to_torch_float([label])
        ])


class PreTrainingDataset(Dataset):
    def __init__(self,
                 tokenizer: BertTokenizer,
                 folder: str,
                 logger,
                 max_seq_length,
                 index,
                 data_type: PretrainDataType = PretrainDataType.NUMPY,
                 max_predictions_per_seq: int = 20):
        self.tokenizer = tokenizer
        self.dir_path = folder
        self.max_seq_length = max_seq_length
        self.len = 0
        self.masked_lm_prob = 0.15
        self.max_predictions_per_seq = max_predictions_per_seq
        self.vocab_words = list(tokenizer.vocab.keys())

        path = get_random_partition(self.dir_path, index)

        logger.info(f"Loading Pretraining Data from {path}")
        start = time.time()
        # logger.info(f"Loading Pretraining Data from {path}")
        # if data_type == PretrainDataType.CLEAN_BODY:
        #     self.data = CleanBodyDataCreator.load(path)
        # elif data_type == PretrainDataType.WIKIPEDIA or data_type == PretrainDataType.BOOK_CORPUS:
        #     self.data = WikiNBookCorpusPretrainingDataCreator.load(path)
        if data_type == PretrainDataType.VALIDATION:
            self.data = WikiPretrainingDataCreator.load(path)
        elif data_type == PretrainDataType.NUMPY:
            self.data = NumpyPretrainingDataCreator.load(path)
        self.len = len(self.data)
        logger.info(
            f"Data Loading Completed for Pretraining Data from {path} with {self.len} samples took {time.time()-start:.2f}s."
        )

        self.len = len(self.data)
        logger.info(
            f"Data Loading Completed for Pretraining Data from {path} with {self.len} samples."
        )

    def __len__(self):
        return self.len

    def __getitem__(self, index):
        i = index % self.len

        instance: TokenInstance = self.data.instances[i]
        return self.create_training_instance(instance)

    def create_training_instance(self, instance: TokenInstance):
        tokens_a, tokens_b, is_next = instance.get_values()
        # print(f'is_next label:{is_next}')
        # Create mapper
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)

        tokens.append("[SEP]")
        segment_ids.append(0)

        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)

        tokens.append("[SEP]")
        segment_ids.append(1)

        # Get Masked LM predictions
        tokens, masked_lm_output = self.create_masked_lm_predictions(tokens)

        # Convert to Ids
        input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
        input_mask = [1] * len(input_ids)

        while len(input_ids) < self.max_seq_length:
            input_ids.append(PAD)
            segment_ids.append(PAD)
            input_mask.append(PAD)
            masked_lm_output.append(-1)
        return ([
            map_to_torch([BatchType.PRETRAIN_BATCH]),
            map_to_torch(input_ids),
            map_to_torch(input_mask),
            map_to_torch(segment_ids),
            map_to_torch([is_next]),
            map_to_torch(masked_lm_output)
        ])

    def create_masked_lm_predictions(self, tokens):
        cand_indexes = []
        for i, token in enumerate(tokens):
            if token == "[CLS]" or token == "[SEP]":
                continue
            cand_indexes.append(i)

        random.shuffle(cand_indexes)
        output_tokens = list(tokens)

        num_to_predict = min(
            self.max_predictions_per_seq,
            max(1, int(round(len(tokens) * self.masked_lm_prob))))

        masked_lms = []
        covered_indexes = set()
        for index in cand_indexes:
            if len(masked_lms) >= num_to_predict:
                break
            if index in covered_indexes:
                continue
            covered_indexes.add(index)

            masked_token = None
            # 80% mask
            if random.random() < 0.8:
                masked_token = "[MASK]"
            else:
                # 10% Keep Original
                if random.random() < 0.5:
                    masked_token = tokens[index]
                # 10% replace w/ random word
                else:
                    masked_token = self.vocab_words[random.randint(
                        0,
                        len(self.vocab_words) - 1)]

            output_tokens[index] = masked_token
            masked_lms.append(
                MaskedLMInstance(index=index, label=tokens[index]))

        masked_lms = sorted(masked_lms, key=lambda x: x.index)
        masked_lm_output = [-1] * len(output_tokens)
        for p in masked_lms:
            masked_lm_output[p.index] = self.tokenizer.vocab[p.label]

        return (output_tokens, masked_lm_output)