nvidia_bert_dataset_provider.py 6.2 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import random
import h5py
import logging
import json
from concurrent.futures import ProcessPoolExecutor

import numpy as np

import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.distributed import DistributedSampler

from bert_dataset_provider import BertDatasetProviderInterface
from turing.dataset import BatchType, map_to_torch


# Workaround because python functions are not picklable
class WorkerInitObj(object):
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


def create_pretraining_dataset(input_file, max_predictions_per_seq,
                               num_workers, train_batch_size, worker_init,
                               data_sampler):
    train_data = pretraining_dataset(
        input_file=input_file, max_predictions_per_seq=max_predictions_per_seq)
    train_dataloader = DataLoader(train_data,
                                  sampler=data_sampler(train_data),
                                  batch_size=train_batch_size,
                                  num_workers=num_workers,
                                  worker_init_fn=worker_init,
                                  pin_memory=True)
    return train_dataloader, len(train_data)


class pretraining_dataset(Dataset):
    def __init__(self, input_file, max_predictions_per_seq):
        self.input_file = input_file
        self.max_predictions_per_seq = max_predictions_per_seq
        f = h5py.File(input_file, "r")
        keys = [
            'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions',
            'masked_lm_ids', 'next_sentence_labels'
        ]
        self.inputs = [np.asarray(f[key][:]) for key in keys]
        f.close()

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.inputs[0])

    def __getitem__(self, index):

        [
            input_ids, input_mask, segment_ids, masked_lm_positions,
            masked_lm_ids, next_sentence_labels
        ] = [
            torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else
            torch.from_numpy(np.asarray(input[index].astype(np.int64)))
            for indice, input in enumerate(self.inputs)
        ]

        masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
        index = self.max_predictions_per_seq
        # store number of  masked tokens in index
        padded_mask_indices = (masked_lm_positions == 0).nonzero()
        if len(padded_mask_indices) != 0:
            index = padded_mask_indices[0].item()
        masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]

        return [
            map_to_torch([BatchType.PRETRAIN_BATCH]), input_ids, input_mask,
            segment_ids, next_sentence_labels, masked_lm_labels
        ]


class NvidiaBertDatasetProvider(BertDatasetProviderInterface):
    def __init__(self, args):
        self.num_workers = args.config['training']['num_workers']
        self.max_seq_length = args.max_seq_length
        self.max_predictions_per_seq = args.max_predictions_per_seq

        self.gradient_accumulation_steps = args.gradient_accumulation_steps
        self.train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
        self.logger = args.logger

        if args.local_rank == -1:
            self.global_rank = 0
            self.world_size = 1
        else:
            self.global_rank = dist.get_rank()
            self.world_size = dist.get_world_size()

        # Initialize dataset files
        dataset_path = os.path.join(
            args.data_path_prefix,
            args.config['data']['datasets']['pretrain_dataset'])
        self.dataset_files = [
            os.path.join(dataset_path, f) for f in os.listdir(dataset_path) if
            os.path.isfile(os.path.join(dataset_path, f)) and 'training' in f
        ]
        self.dataset_files.sort()
        random.shuffle(self.dataset_files)
        self.num_files = len(self.dataset_files)
        self.data_sampler = RandomSampler

        self.worker_init = WorkerInitObj(args.seed + args.local_rank)
        self.dataset_future = None
        self.pool = ProcessPoolExecutor(1)

        if self.global_rank == 0:
            self.logger.info(
                f"NvidiaBertDatasetProvider - Initialization:  num_files = {self.num_files}"
            )

    def get_shard(self, index):
        if self.dataset_future is None:
            data_file = self._get_shard_file(index)
            self.train_dataloader, sample_count = create_pretraining_dataset(
                input_file=data_file,
                max_predictions_per_seq=self.max_predictions_per_seq,
                num_workers=self.num_workers,
                train_batch_size=self.train_micro_batch_size_per_gpu,
                worker_init=self.worker_init,
                data_sampler=self.data_sampler)
        else:
            self.train_dataloader, sample_count = self.dataset_future.result(
                timeout=None)

        return self.train_dataloader, sample_count

    def release_shard(self, index):
        del self.train_dataloader

    def prefetch_shard(self, index):
        data_file = self._get_shard_file(index)
        self.dataset_future = self.pool.submit(
            create_pretraining_dataset, data_file,
            self.max_predictions_per_seq, self.num_workers,
            self.train_micro_batch_size_per_gpu, self.worker_init,
            self.data_sampler)

    def get_batch(self, batch_iter):
        return batch_iter

    def prefetch_batch(self):
        pass

    def _get_shard_file(self, shard_index):
        file_index = self._get_shard_file_index(shard_index, self.global_rank)
        return self.dataset_files[file_index % self.num_files]

    def _get_shard_file_index(self, shard_index, global_rank):
        if dist.is_initialized() and self.world_size > self.num_files:
            remainder = self.world_size % self.num_files
            file_index = (shard_index * self.world_size) + global_rank + (
                remainder * shard_index)
        else:
            file_index = shard_index * self.world_size + global_rank

        return file_index % self.num_files