integrations.py 33.5 KB
Newer Older
Pan,Huiwen's avatar
Pan,Huiwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integrations with other Python libraries.
"""
import importlib.util
import io
import json
import math
import numbers
import os
import re
import tempfile
from pathlib import Path
from types import SimpleNamespace

from .trainer_utils import SchedulerType
from .utils import logging


logger = logging.get_logger(__name__)


# comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet:
    try:
        import comet_ml  # noqa: F401

        if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
            _has_comet = True
        else:
            if os.getenv("COMET_MODE", "").upper() != "DISABLED":
                logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
            _has_comet = False
    except (ImportError, ValueError):
        _has_comet = False

from .file_utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available  # noqa: E402
from .trainer_callback import TrainerCallback  # noqa: E402
from .trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, EvaluationStrategy  # noqa: E402


# Integration functions:
def is_wandb_available():
    # any value of WANDB_DISABLED disables wandb
    if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
        logger.warn(
            "Using the `WAND_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
            "--report_to flag to control the integrations used for logging result (for instance --report_to none)."
        )
        return False
    return importlib.util.find_spec("wandb") is not None


def is_comet_available():
    return _has_comet


def is_tensorboard_available():
    return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None


def is_optuna_available():
    return importlib.util.find_spec("optuna") is not None


def is_ray_available():
    return importlib.util.find_spec("ray") is not None


def is_ray_tune_available():
    if not is_ray_available():
        return False
    return importlib.util.find_spec("ray.tune") is not None


def is_azureml_available():
    if importlib.util.find_spec("azureml") is None:
        return False
    if importlib.util.find_spec("azureml.core") is None:
        return False
    return importlib.util.find_spec("azureml.core.run") is not None


def is_mlflow_available():
    return importlib.util.find_spec("mlflow") is not None


def is_fairscale_available():
    return importlib.util.find_spec("fairscale") is not None


def is_deepspeed_available():
    return importlib.util.find_spec("deepspeed") is not None


def hp_params(trial):
    if is_optuna_available():
        import optuna

        if isinstance(trial, optuna.Trial):
            return trial.params
    if is_ray_tune_available():
        if isinstance(trial, dict):
            return trial

    raise RuntimeError(f"Unknown type for trial {trial.__class__}")


def default_hp_search_backend():
    if is_optuna_available():
        return "optuna"
    elif is_ray_tune_available():
        return "ray"


def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    import optuna

    def _objective(trial, checkpoint_dir=None):
        checkpoint = None
        if checkpoint_dir:
            for subdir in os.listdir(checkpoint_dir):
                if subdir.startswith(PREFIX_CHECKPOINT_DIR):
                    checkpoint = os.path.join(checkpoint_dir, subdir)
        trainer.objective = None
        trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
        # If there hasn't been any evaluation during the training loop.
        if getattr(trainer, "objective", None) is None:
            metrics = trainer.evaluate()
            trainer.objective = trainer.compute_objective(metrics)
        return trainer.objective

    timeout = kwargs.pop("timeout", None)
    n_jobs = kwargs.pop("n_jobs", 1)
    study = optuna.create_study(direction=direction, **kwargs)
    study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
    best_trial = study.best_trial
    return BestRun(str(best_trial.number), best_trial.value, best_trial.params)


def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    import ray

    def _objective(trial, local_trainer, checkpoint_dir=None):
        checkpoint = None
        if checkpoint_dir:
            for subdir in os.listdir(checkpoint_dir):
                if subdir.startswith(PREFIX_CHECKPOINT_DIR):
                    checkpoint = os.path.join(checkpoint_dir, subdir)
        local_trainer.objective = None
        local_trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
        # If there hasn't been any evaluation during the training loop.
        if getattr(local_trainer, "objective", None) is None:
            metrics = local_trainer.evaluate()
            local_trainer.objective = local_trainer.compute_objective(metrics)
            local_trainer._tune_save_checkpoint()
            ray.tune.report(objective=local_trainer.objective, **metrics, done=True)

    # The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
    # while doing the ray hp search.

    _tb_writer = trainer.pop_callback(TensorBoardCallback)
    trainer.model = None
    # Setup default `resources_per_trial` and `reporter`.
    if "resources_per_trial" not in kwargs and trainer.args.n_gpu > 0:
        # `args.n_gpu` is considered the total number of GPUs that will be split
        # among the `n_jobs`
        n_jobs = int(kwargs.pop("n_jobs", 1))
        num_gpus_per_trial = trainer.args.n_gpu
        if num_gpus_per_trial / n_jobs >= 1:
            num_gpus_per_trial = int(math.ceil(num_gpus_per_trial / n_jobs))
        kwargs["resources_per_trial"] = {"gpu": num_gpus_per_trial}

    if "progress_reporter" not in kwargs:
        from ray.tune import CLIReporter

        kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])
    if "keep_checkpoints_num" in kwargs and kwargs["keep_checkpoints_num"] > 0:
        # `keep_checkpoints_num=0` would disabled checkpointing
        trainer.use_tune_checkpoints = True
        if kwargs["keep_checkpoints_num"] > 1:
            logger.warning(
                "Currently keeping {} checkpoints for each trial. Checkpoints are usually huge, "
                "consider setting `keep_checkpoints_num=1`."
            )
    if "scheduler" in kwargs:
        from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining

        # Check if checkpointing is enabled for PopulationBasedTraining
        if isinstance(kwargs["scheduler"], PopulationBasedTraining):
            if not trainer.use_tune_checkpoints:
                logger.warning(
                    "You are using PopulationBasedTraining but you haven't enabled checkpointing. "
                    "This means your trials will train from scratch everytime they are exploiting "
                    "new configurations. Consider enabling checkpointing by passing "
                    "`keep_checkpoints_num=1` as an additional argument to `Trainer.hyperparameter_search`."
                )

        # Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
        if isinstance(
            kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
        ) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == EvaluationStrategy.NO):
            raise RuntimeError(
                "You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
                "This means your trials will not report intermediate results to Ray Tune, and "
                "can thus not be stopped early or used to exploit other trials parameters. "
                "If this is what you want, do not use {cls}. If you would like to use {cls}, "
                "make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
                "Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
            )

    analysis = ray.tune.run(
        ray.tune.with_parameters(_objective, local_trainer=trainer),
        config=trainer.hp_space(None),
        num_samples=n_trials,
        **kwargs,
    )
    best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3])
    best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config)
    if _tb_writer is not None:
        trainer.add_callback(_tb_writer)
    return best_run


def get_available_reporting_integrations():
    integrations = []
    if is_azureml_available():
        integrations.append("azure_ml")
    if is_comet_available():
        integrations.append("comet_ml")
    if is_mlflow_available():
        integrations.append("mlflow")
    if is_tensorboard_available():
        integrations.append("tensorboard")
    if is_wandb_available():
        integrations.append("wandb")
    return integrations


def rewrite_logs(d):
    new_d = {}
    eval_prefix = "eval_"
    eval_prefix_len = len(eval_prefix)
    for k, v in d.items():
        if k.startswith(eval_prefix):
            new_d["eval/" + k[eval_prefix_len:]] = v
        else:
            new_d["train/" + k] = v
    return new_d


def init_deepspeed(trainer, num_training_steps, clt_optimizer=None, clt_lr_scheduler=None):
    """
    Init DeepSpeed, after converting any relevant Trainer's args into DeepSpeed configuration

    Args:
        trainer: Trainer object
        num_training_steps: per single gpu

    Returns: model, optimizer, lr_scheduler
    """
    import deepspeed

    args = trainer.args
    ds_config_file = args.deepspeed
    model = trainer.model

    with io.open(ds_config_file, "r", encoding="utf-8") as f:
        config = json.load(f)

    # The following code translates relevant trainer's cl args into the DS config

    # First to ensure that there is no mismatch between cl args values and presets in the config
    # file, ask to not set in ds config file:
    # - "train_batch_size",
    # - "train_micro_batch_size_per_gpu",
    # - "gradient_accumulation_steps"
    bs_keys = ["train_batch_size", "train_micro_batch_size_per_gpu"]
    if len([x for x in bs_keys if x in config.keys()]):
        raise ValueError(
            f"Do not include {bs_keys} entries in the ds config file, as they will be set via --per_device_train_batch_size or its default"
        )
    if "gradient_accumulation_steps" in config.keys():
        raise ValueError(
            "Do not include gradient_accumulation_steps entries in the ds config file, as they will be set via --gradient_accumulation_steps or its default"
        )

    # DeepSpeed does:
    #   train_batch_size = n_gpus * train_micro_batch_size_per_gpu * gradient_accumulation_steps
    # therefore we just need to set:
    config["train_micro_batch_size_per_gpu"] = args.per_device_train_batch_size
    config["gradient_accumulation_steps"] = args.gradient_accumulation_steps

    if "gradient_clipping" in config:
        logger.info(
            f"Keeping the `gradient_clipping` config from {ds_config_file} intact, ignoring any gradient clipping-specific cl args"
        )
    else:  # override only if the ds config doesn't already have this section
        config["gradient_clipping"] = args.max_grad_norm

    if clt_optimizer is not None:
        logger.info(
            f"Keeping the `optimizer` from client model, ignoring any optimizer-specific cl args"
        )
    elif "optimizer" in config:
        logger.info(
            f"Keeping the `optimizer` config from {ds_config_file} intact, ignoring any optimizer-specific cl args"
        )
    else:  # override only if the ds config doesn't already have this section
        # ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
        # But trainer uses AdamW by default.
        # To use other optimizers so using a different scheduler requires voiding warranty with: `zero_allow_untested_optimizer`

        optimizer_configs = {
            "AdamW": {
                "lr": args.learning_rate,
                "betas": [args.adam_beta1, args.adam_beta2],
                "eps": args.adam_epsilon,
                "weight_decay": args.weight_decay,
            }
        }
        optimizer = "AdamW"

        config["zero_allow_untested_optimizer"] = True
        config["optimizer"] = {
            "type": optimizer,
            "params": optimizer_configs[optimizer],
        }

    # DS schedulers (deepspeed/runtime/lr_schedules.py):
    #
    # DS name      | --lr_scheduler_type  | HF func                           | Notes
    # -------------| ---------------------|-----------------------------------|--------------------
    # LRRangeTest  | na                   | na                                | LRRT
    # OneCycle     | na                   | na                                | 1CLR
    # WarmupLR     | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0
    # WarmupDecayLR| linear               | get_linear_schedule_with_warmup   |
    if clt_lr_scheduler is not None:
        logger.info(
            f"Keeping the `scheduler` from client model, ignoring any scheduler-specific cl args"
        )
    elif "scheduler" in config:
        logger.info(
            f"Keeping the `scheduler` config from {ds_config_file} intact, ignoring any scheduler-specific cl args"
        )
    else:  # override only if the ds config doesn't already have this section
        if args.lr_scheduler_type == SchedulerType.LINEAR:
            scheduler = "WarmupDecayLR"
            params = {
                "last_batch_iteration": -1,
                "total_num_steps": num_training_steps,
                "warmup_min_lr": 0,
                "warmup_max_lr": args.learning_rate,
                "warmup_num_steps": args.warmup_steps,
            }
        elif args.lr_scheduler_type == SchedulerType.CONSTANT_WITH_WARMUP:
            scheduler = "WarmupLR"
            params = {
                "warmup_min_lr": 0,
                "warmup_max_lr": args.learning_rate,
                "warmup_num_steps": args.warmup_steps,
            }
        else:
            raise ValueError(f"{args.lr_scheduler_type} scheduler type is not supported by DeepSpeed")

        config["scheduler"] = {
            "type": scheduler,
            "params": params,
        }

    # fp16
    if trainer.fp16_backend is not None:
        # Deepspeed has 2 possible fp16 config entries:
        # - `fp16`: for the native amp - it has a bunch of optional params but we won't set any here unless the user did the work
        # - `amp`: which delegates amp work to apex (which needs to be available), but it cannot be used with any ZeRO features, so probably best to be avoided.
        if trainer.fp16_backend == "apex":
            if "amp" in config:
                logger.info(
                    f"Keeping the `amp` config from {ds_config_file} intact, ignoring any amp-specific cl args"
                )
            else:
                config["amp"] = {
                    "enabled": True,
                    "opt_level": args.fp16_opt_level,
                }
        elif trainer.fp16_backend == "amp":
            if "fp16" in config:
                logger.info(
                    f"Keeping the `fp16` config from {ds_config_file} intact, ignoring any fp16-specific cl args"
                )
            else:
                config["fp16"] = {
                    "enabled": True,
                }

    # for clarity extract the specific cl args that are being passed to deepspeed
    ds_args = dict(local_rank=args.local_rank)

    # init that takes part of the config via `args`, and the bulk of it via `config_params`
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    model, optimizer, _, lr_scheduler = deepspeed.initialize(
        args=SimpleNamespace(**ds_args),  # expects an obj
        model=model,
        model_parameters=model_parameters,
        config_params=config,
        optimizer=clt_optimizer,
        lr_scheduler=clt_lr_scheduler,
    )

    return model, optimizer, lr_scheduler


class TensorBoardCallback(TrainerCallback):
    """
    A :class:`~transformers.TrainerCallback` that sends the logs to `TensorBoard
    <https://www.tensorflow.org/tensorboard>`__.

    Args:
        tb_writer (:obj:`SummaryWriter`, `optional`):
            The writer to use. Will instantiate one if not set.
    """

    def __init__(self, tb_writer=None):
        has_tensorboard = is_tensorboard_available()
        assert (
            has_tensorboard
        ), "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or install tensorboardX."
        if has_tensorboard:
            try:
                from torch.utils.tensorboard import SummaryWriter  # noqa: F401

                self._SummaryWriter = SummaryWriter
            except ImportError:
                try:
                    from tensorboardX import SummaryWriter

                    self._SummaryWriter = SummaryWriter
                except ImportError:
                    self._SummaryWriter = None
        else:
            self._SummaryWriter = None
        self.tb_writer = tb_writer

    def _init_summary_writer(self, args, log_dir=None):
        log_dir = log_dir or args.logging_dir
        if self._SummaryWriter is not None:
            self.tb_writer = self._SummaryWriter(log_dir=log_dir)

    def on_train_begin(self, args, state, control, **kwargs):
        if not state.is_world_process_zero:
            return

        log_dir = None

        if state.is_hyper_param_search:
            trial_name = state.trial_name
            if trial_name is not None:
                log_dir = os.path.join(args.logging_dir, trial_name)

        self._init_summary_writer(args, log_dir)

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", args.to_json_string())
            if "model" in kwargs:
                model = kwargs["model"]
                if hasattr(model, "config") and model.config is not None:
                    model_config_json = model.config.to_json_string()
                    self.tb_writer.add_text("model_config", model_config_json)
            # Version of TensorBoard coming from tensorboardX does not have this method.
            if hasattr(self.tb_writer, "add_hparams"):
                self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={})

    def on_log(self, args, state, control, logs=None, **kwargs):
        if state.is_world_process_zero:
            if self.tb_writer is None:
                self._init_summary_writer(args)

        if self.tb_writer is not None:
            logs = rewrite_logs(logs)
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, state.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
            self.tb_writer.flush()

    def on_train_end(self, args, state, control, **kwargs):
        if self.tb_writer:
            self.tb_writer.close()


class WandbCallback(TrainerCallback):
    """
    A :class:`~transformers.TrainerCallback` that sends the logs to `Weight and Biases <https://www.wandb.com/>`__.
    """

    def __init__(self):
        has_wandb = is_wandb_available()
        assert has_wandb, "WandbCallback requires wandb to be installed. Run `pip install wandb`."
        if has_wandb:
            import wandb

            wandb.ensure_configured()
            if wandb.api.api_key is None:
                has_wandb = False
                logger.warning(
                    "W&B installed but not logged in. Run `wandb login` or set the WANDB_API_KEY env variable."
                )
                self._wandb = None
            else:
                self._wandb = wandb
        self._initialized = False
        # log outputs
        self._log_model = os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})

    def setup(self, args, state, model, reinit, **kwargs):
        """
        Setup the optional Weights & Biases (`wandb`) integration.

        One can subclass and override this method to customize the setup if needed. Find more information `here
        <https://docs.wandb.ai/integrations/huggingface>`__. You can also override the following environment variables:

        Environment:
            WANDB_LOG_MODEL (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to log model as artifact at the end of training.
            WANDB_WATCH (:obj:`str`, `optional` defaults to :obj:`"gradients"`):
                Can be :obj:`"gradients"`, :obj:`"all"` or :obj:`"false"`. Set to :obj:`"false"` to disable gradient
                logging or :obj:`"all"` to log gradients and parameters.
            WANDB_PROJECT (:obj:`str`, `optional`, defaults to :obj:`"huggingface"`):
                Set this to a custom string to store results in a different project.
            WANDB_DISABLED (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to disable wandb entirely. Set `WANDB_DISABLED=true` to disable.
        """
        if self._wandb is None:
            return
        self._initialized = True
        if state.is_world_process_zero:
            logger.info(
                'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
            )
            combined_dict = {**args.to_sanitized_dict()}

            if hasattr(model, "config") and model.config is not None:
                model_config = model.config.to_dict()
                combined_dict = {**model_config, **combined_dict}
            trial_name = state.trial_name
            init_args = {}
            if trial_name is not None:
                run_name = trial_name
                init_args["group"] = args.run_name
            else:
                run_name = args.run_name

            self._wandb.init(
                project=os.getenv("WANDB_PROJECT", "huggingface"),
                config=combined_dict,
                name=run_name,
                reinit=reinit,
                **init_args,
            )

            # keep track of model topology and gradients, unsupported on TPU
            if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
                self._wandb.watch(
                    model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, args.logging_steps)
                )

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if self._wandb is None:
            return
        hp_search = state.is_hyper_param_search
        if not self._initialized or hp_search:
            self.setup(args, state, model, reinit=hp_search, **kwargs)

    def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
        if self._wandb is None:
            return
        # commit last step
        if state.is_world_process_zero:
            self._wandb.log({})
        if self._log_model and self._initialized and state.is_world_process_zero:
            from .trainer import Trainer

            fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
            with tempfile.TemporaryDirectory() as temp_dir:
                fake_trainer.save_model(temp_dir)
                # use run name and ensure it's a valid Artifact name
                artifact_name = re.sub(r"[^a-zA-Z0-9_\.\-]", "", self._wandb.run.name)
                metadata = (
                    {
                        k: v
                        for k, v in dict(self._wandb.summary).items()
                        if isinstance(v, numbers.Number) and not k.startswith("_")
                    }
                    if not args.load_best_model_at_end
                    else {
                        f"eval/{args.metric_for_best_model}": state.best_metric,
                        "train/total_floss": state.total_flos,
                    }
                )
                artifact = self._wandb.Artifact(name=f"run-{artifact_name}", type="model", metadata=metadata)
                for f in Path(temp_dir).glob("*"):
                    if f.is_file():
                        with artifact.new_file(f.name, mode="wb") as fa:
                            fa.write(f.read_bytes())
                self._wandb.run.log_artifact(artifact)

    def on_log(self, args, state, control, model=None, logs=None, **kwargs):
        if self._wandb is None:
            return
        if not self._initialized:
            self.setup(args, state, model, reinit=False)
        if state.is_world_process_zero:
            logs = rewrite_logs(logs)
            self._wandb.log(logs, step=state.global_step)


class CometCallback(TrainerCallback):
    """
    A :class:`~transformers.TrainerCallback` that sends the logs to `Comet ML <https://www.comet.ml/site/>`__.
    """

    def __init__(self):
        assert _has_comet, "CometCallback requires comet-ml to be installed. Run `pip install comet-ml`."
        self._initialized = False

    def setup(self, args, state, model):
        """
        Setup the optional Comet.ml integration.

        Environment:
            COMET_MODE (:obj:`str`, `optional`):
                "OFFLINE", "ONLINE", or "DISABLED"
            COMET_PROJECT_NAME (:obj:`str`, `optional`):
                Comet.ml project name for experiments
            COMET_OFFLINE_DIRECTORY (:obj:`str`, `optional`):
                Folder to use for saving offline experiments when :obj:`COMET_MODE` is "OFFLINE"

        For a number of configurable items in the environment, see `here
        <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__.
        """
        self._initialized = True
        if state.is_world_process_zero:
            comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
            args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
            experiment = None
            if comet_mode == "ONLINE":
                experiment = comet_ml.Experiment(**args)
                logger.info("Automatic Comet.ml online logging enabled")
            elif comet_mode == "OFFLINE":
                args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
                experiment = comet_ml.OfflineExperiment(**args)
                logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
            if experiment is not None:
                experiment._set_model_graph(model, framework="transformers")
                experiment._log_parameters(args, prefix="args/", framework="transformers")
                if hasattr(model, "config"):
                    experiment._log_parameters(model.config, prefix="config/", framework="transformers")

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)

    def on_log(self, args, state, control, model=None, logs=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            experiment = comet_ml.config.get_global_experiment()
            if experiment is not None:
                experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")


class AzureMLCallback(TrainerCallback):
    """
    A :class:`~transformers.TrainerCallback` that sends the logs to `AzureML
    <https://pypi.org/project/azureml-sdk/>`__.
    """

    def __init__(self, azureml_run=None):
        assert (
            is_azureml_available()
        ), "AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`."
        self.azureml_run = azureml_run

    def on_init_end(self, args, state, control, **kwargs):
        from azureml.core.run import Run

        if self.azureml_run is None and state.is_world_process_zero:
            self.azureml_run = Run.get_context()

    def on_log(self, args, state, control, logs=None, **kwargs):
        if self.azureml_run:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.azureml_run.log(k, v, description=k)


class MLflowCallback(TrainerCallback):
    """
    A :class:`~transformers.TrainerCallback` that sends the logs to `MLflow <https://www.mlflow.org/>`__.
    """

    def __init__(self):
        assert is_mlflow_available(), "MLflowCallback requires mlflow to be installed. Run `pip install mlflow`."
        import mlflow

        self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
        self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH

        self._initialized = False
        self._log_artifacts = False
        self._ml_flow = mlflow

    def setup(self, args, state, model):
        """
        Setup the optional MLflow integration.

        Environment:
            HF_MLFLOW_LOG_ARTIFACTS (:obj:`str`, `optional`):
                Whether to use MLflow .log_artifact() facility to log artifacts.

                This only makes sense if logging to a remote server, e.g. s3 or GCS. If set to `True` or `1`, will copy
                whatever is in TrainerArgument's output_dir to the local or remote artifact storage. Using it without a
                remote storage will just copy the files to your artifact location.
        """
        log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper()
        if log_artifacts in {"TRUE", "1"}:
            self._log_artifacts = True
        if state.is_world_process_zero:
            self._ml_flow.start_run()
            combined_dict = args.to_dict()
            if hasattr(model, "config") and model.config is not None:
                model_config = model.config.to_dict()
                combined_dict = {**model_config, **combined_dict}
            # remove params that are too long for MLflow
            for name, value in list(combined_dict.items()):
                # internally, all values are converted to str in MLflow
                if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
                    logger.warning(
                        f"Trainer is attempting to log a value of "
                        f'"{value}" for key "{name}" as a parameter. '
                        f"MLflow's log_param() only accepts values no longer than "
                        f"250 characters so we dropped this attribute."
                    )
                    del combined_dict[name]
            # MLflow cannot log more than 100 values in one go, so we have to split it
            combined_dict_items = list(combined_dict.items())
            for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
                self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
        self._initialized = True

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)

    def on_log(self, args, state, control, logs, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self._ml_flow.log_metric(k, v, step=state.global_step)
                else:
                    logger.warning(
                        f"Trainer is attempting to log a value of "
                        f'"{v}" of type {type(v)} for key "{k}" as a metric. '
                        f"MLflow's log_metric() only accepts float and "
                        f"int types so we dropped this attribute."
                    )

    def on_train_end(self, args, state, control, **kwargs):
        if self._initialized and state.is_world_process_zero:
            if self._log_artifacts:
                logger.info("Logging artifacts. This may take time.")
                self._ml_flow.log_artifacts(args.output_dir)

    def __del__(self):
        # if the previous run is not terminated correctly, the fluent API will
        # not let you start a new run before the previous one is killed
        if self._ml_flow.active_run is not None:
            self._ml_flow.end_run()


INTEGRATION_TO_CALLBACK = {
    "azure_ml": AzureMLCallback,
    "comet_ml": CometCallback,
    "mlflow": MLflowCallback,
    "tensorboard": TensorBoardCallback,
    "wandb": WandbCallback,
}


def get_reporting_integration_callbacks(report_to):
    for integration in report_to:
        if integration not in INTEGRATION_TO_CALLBACK:
            raise ValueError(
                f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
            )
    return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]