translate.py 15.1 KB
Newer Older
huchen's avatar
huchen committed
1
#!/usr/bin/env python
Pan,Huiwen's avatar
Pan,Huiwen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

# Copyright (c) 2017 Elad Hoffer
# Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import os

os.environ['KMP_AFFINITY'] = 'disabled'

huchen's avatar
huchen committed
28
import argparse
Pan,Huiwen's avatar
Pan,Huiwen committed
29
import itertools
huchen's avatar
huchen committed
30
import logging
Pan,Huiwen's avatar
Pan,Huiwen committed
31
import sys
huchen's avatar
huchen committed
32
33
34
import warnings
from itertools import product

Pan,Huiwen's avatar
Pan,Huiwen committed
35
36
import dllogger
import numpy as np
huchen's avatar
huchen committed
37
38
import torch

Pan,Huiwen's avatar
Pan,Huiwen committed
39
import seq2seq.gpu_affinity as gpu_affinity
huchen's avatar
huchen committed
40
import seq2seq.utils as utils
Pan,Huiwen's avatar
Pan,Huiwen committed
41
42
from seq2seq.data.dataset import RawTextDataset
from seq2seq.data.dataset import SyntheticDataset
huchen's avatar
huchen committed
43
from seq2seq.data.tokenizer import Tokenizer
Pan,Huiwen's avatar
Pan,Huiwen committed
44
45
from seq2seq.inference import tables
from seq2seq.inference.translator import Translator
huchen's avatar
huchen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from seq2seq.models.gnmt import GNMT


def parse_args():
    """
    Parse commandline arguments.
    """
    def exclusive_group(group, name, default, help):
        destname = name.replace('-', '_')
        subgroup = group.add_mutually_exclusive_group(required=False)
        subgroup.add_argument(f'--{name}', dest=f'{destname}',
                              action='store_true',
                              help=f'{help} (use \'--no-{name}\' to disable)')
        subgroup.add_argument(f'--no-{name}', dest=f'{destname}',
                              action='store_false', help=argparse.SUPPRESS)
        subgroup.set_defaults(**{destname: default})

    parser = argparse.ArgumentParser(
        description='GNMT Translate',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # dataset
    dataset = parser.add_argument_group('data setup')
Pan,Huiwen's avatar
Pan,Huiwen committed
69
70
71
    dataset.add_argument('-o', '--output', required=False,
                         help='full path to the output file \
                         if not specified, then the output will be printed')
huchen's avatar
huchen committed
72
73
    dataset.add_argument('-r', '--reference', default=None,
                         help='full path to the file with reference \
Pan,Huiwen's avatar
Pan,Huiwen committed
74
75
                         translations (for sacrebleu, raw text)')
    dataset.add_argument('-m', '--model', type=str, default=None,
huchen's avatar
huchen committed
76
                         help='full path to the model checkpoint file')
Pan,Huiwen's avatar
Pan,Huiwen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    dataset.add_argument('--synthetic', action='store_true',
                         help='use synthetic dataset')
    dataset.add_argument('--synthetic-batches', type=int, default=64,
                         help='number of synthetic batches to generate')
    dataset.add_argument('--synthetic-vocab', type=int, default=32320,
                         help='size of synthetic vocabulary')
    dataset.add_argument('--synthetic-len', type=int, default=50,
                         help='sequence length of synthetic samples')

    source = dataset.add_mutually_exclusive_group(required=False)
    source.add_argument('-i', '--input', required=False,
                        help='full path to the input file (raw text)')
    source.add_argument('-t', '--input-text', nargs='+', required=False,
                        help='raw input text')

    exclusive_group(group=dataset, name='sort', default=False,
huchen's avatar
huchen committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
                    help='sorts dataset by sequence length')

    # parameters
    params = parser.add_argument_group('inference setup')
    params.add_argument('--batch-size', nargs='+', default=[128], type=int,
                        help='batch size per GPU')
    params.add_argument('--beam-size', nargs='+', default=[5], type=int,
                        help='beam size')
    params.add_argument('--max-seq-len', default=80, type=int,
                        help='maximum generated sequence length')
    params.add_argument('--len-norm-factor', default=0.6, type=float,
                        help='length normalization factor')
    params.add_argument('--cov-penalty-factor', default=0.1, type=float,
                        help='coverage penalty factor')
    params.add_argument('--len-norm-const', default=5.0, type=float,
                        help='length normalization constant')
    # general setup
    general = parser.add_argument_group('general setup')
    general.add_argument('--math', nargs='+', default=['fp16'],
Pan,Huiwen's avatar
Pan,Huiwen committed
113
                         choices=['fp16', 'fp32', 'tf32'], help='precision')
huchen's avatar
huchen committed
114

Pan,Huiwen's avatar
Pan,Huiwen committed
115
    exclusive_group(group=general, name='env', default=False,
huchen's avatar
huchen committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                    help='print info about execution env')
    exclusive_group(group=general, name='bleu', default=True,
                    help='compares with reference translation and computes \
                    BLEU')
    exclusive_group(group=general, name='cuda', default=True,
                    help='enables cuda')
    exclusive_group(group=general, name='cudnn', default=True,
                    help='enables cudnn')

    batch_first_parser = general.add_mutually_exclusive_group(required=False)
    batch_first_parser.add_argument('--batch-first', dest='batch_first',
                                    action='store_true',
                                    help='uses (batch, seq, feature) data \
                                    format for RNNs')
    batch_first_parser.add_argument('--seq-first', dest='batch_first',
                                    action='store_false',
                                    help='uses (seq, batch, feature) data \
                                    format for RNNs')
    batch_first_parser.set_defaults(batch_first=True)

Pan,Huiwen's avatar
Pan,Huiwen committed
136
137
138
139
140
    general.add_argument('--save-dir', default='gnmt',
                         help='path to directory with results, it will be \
                         automatically created if it does not exist')
    general.add_argument('--dllog-file', type=str, default='eval_log.json',
                         help='Name of the DLLogger output file')
huchen's avatar
huchen committed
141
142
    general.add_argument('--print-freq', '-p', default=1, type=int,
                         help='print log every PRINT_FREQ batches')
Pan,Huiwen's avatar
Pan,Huiwen committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    general.add_argument('--affinity', type=str,
                         default='single_unique',
                         choices=['socket', 'single', 'single_unique',
                                  'socket_unique_interleaved',
                                  'socket_unique_continuous',
                                  'disabled'],
                         help='type of CPU affinity')

    # benchmarking
    benchmark = parser.add_argument_group('benchmark setup')
    benchmark.add_argument('--target-perf', default=None, type=float,
                           help='target inference performance (in tokens \
                           per second)')
    benchmark.add_argument('--target-bleu', default=None, type=float,
                           help='target accuracy')

    benchmark.add_argument('--repeat', nargs='+', default=[1], type=float,
                           help='loops over the dataset REPEAT times, flag \
                           accepts multiple arguments, one for each specified \
                           batch size')
    benchmark.add_argument('--warmup', default=0, type=int,
                           help='warmup iterations for performance counters')
    benchmark.add_argument('--percentiles', nargs='+', type=int,
                           default=(90, 95, 99),
                           help='Percentiles for confidence intervals for \
                           throughput/latency benchmarks')
    exclusive_group(group=benchmark, name='tables', default=False,
                    help='print accuracy, throughput and latency results in \
                    tables')
huchen's avatar
huchen committed
172
173
174

    # distributed
    distributed = parser.add_argument_group('distributed setup')
Pan,Huiwen's avatar
Pan,Huiwen committed
175
176
177
    distributed.add_argument('--local_rank',  type=int,
                             default=os.getenv('LOCAL_RANK', 0),
                             help='Used for multi-process training.')
huchen's avatar
huchen committed
178
179
180

    args = parser.parse_args()

Pan,Huiwen's avatar
Pan,Huiwen committed
181
182
183
    if args.input_text:
        args.bleu = False

huchen's avatar
huchen committed
184
185
186
    if args.bleu and args.reference is None:
        parser.error('--bleu requires --reference')

Pan,Huiwen's avatar
Pan,Huiwen committed
187
188
189
190
191
192
193
194
195
196
    if ('fp16' in args.math or 'tf32' in args.math) and not args.cuda:
        parser.error(f'--math {args.math} requires --cuda')

    if len(list(product(args.math, args.batch_size, args.beam_size))) > 1:
        args.target_bleu = None
        args.target_perf = None

    args.repeat = dict(itertools.zip_longest(args.batch_size,
                                             args.repeat,
                                             fillvalue=1))
huchen's avatar
huchen committed
197
198
199
200
201
202
203
204
205
206
207

    return args


def main():
    """
    Launches translation (inference).
    Inference is executed on a single GPU, implementation supports beam search
    with length normalization and coverage penalty.
    """
    args = parse_args()
Pan,Huiwen's avatar
Pan,Huiwen committed
208
209
210
211
212
213
214
215
216
    if args.affinity != 'disabled':
        nproc_per_node = torch.cuda.device_count()
        affinity = gpu_affinity.set_affinity(
            args.local_rank,
            nproc_per_node,
            args.affinity
        )
        print(f'{args.local_rank}: thread affinity: {affinity}')
    device = utils.set_device(args.cuda, args.local_rank)
huchen's avatar
huchen committed
217
    utils.init_distributed(args.cuda)
Pan,Huiwen's avatar
Pan,Huiwen committed
218
219
220
221
222
223
    args.rank = utils.get_rank()
    os.makedirs(args.save_dir, exist_ok=True)
    utils.setup_logging()

    dllog_file = os.path.join(args.save_dir, args.dllog_file)
    utils.setup_dllogger(enabled=True, filename=dllog_file)
huchen's avatar
huchen committed
224
225
226
227
228

    if args.env:
        utils.log_env_info()

    logging.info(f'Run arguments: {args}')
Pan,Huiwen's avatar
Pan,Huiwen committed
229
    dllogger.log(step='PARAMETER', data=vars(args))
huchen's avatar
huchen committed
230
231
232
233
234
235
236

    if not args.cuda and torch.cuda.is_available():
        warnings.warn('cuda is available but not enabled')
    if not args.cudnn:
        torch.backends.cudnn.enabled = False

    # load checkpoint and deserialize to CPU (to save GPU memory)
Pan,Huiwen's avatar
Pan,Huiwen committed
237
238
    if args.model:
        checkpoint = torch.load(args.model, map_location={'cuda:0': 'cpu'})
huchen's avatar
huchen committed
239

Pan,Huiwen's avatar
Pan,Huiwen committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        # build GNMT model
        tokenizer = Tokenizer()
        tokenizer.set_state(checkpoint['tokenizer'])
        model_config = checkpoint['model_config']
        model_config['batch_first'] = args.batch_first
        model_config['vocab_size'] = tokenizer.vocab_size
        model = GNMT(**model_config)
        model.load_state_dict(checkpoint['state_dict'])
    elif args.synthetic:
        model = GNMT(args.synthetic_vocab, batch_first=args.batch_first)
        tokenizer = None
    else:
        raise RuntimeError('Specify model either with --synthetic or with --model flag')

    # construct the dataset
    if args.input:
        data = RawTextDataset(raw_datafile=args.input,
                              tokenizer=tokenizer,
                              sort=args.sort,
                              )
    elif args.input_text:
        data = RawTextDataset(raw_data=args.input_text,
                              tokenizer=tokenizer,
                              sort=args.sort,
                              )
    elif args.synthetic:
        data = SyntheticDataset(args.synthetic_vocab, args.synthetic_len, args.batch_size[0] * args.synthetic_batches)

    latency_table = tables.LatencyTable(args.percentiles)
    throughput_table = tables.ThroughputTable(args.percentiles)
    accuracy_table = tables.AccuracyTable('BLEU')

    dtype = {
        'fp32': torch.FloatTensor,
        'tf32': torch.FloatTensor,
        'fp16': torch.HalfTensor
    }
huchen's avatar
huchen committed
277
278
279
280
281
282

    for (math, batch_size, beam_size) in product(args.math, args.batch_size,
                                                 args.beam_size):
        logging.info(f'math: {math}, batch size: {batch_size}, '
                     f'beam size: {beam_size}')

Pan,Huiwen's avatar
Pan,Huiwen committed
283
284
285
        model.type(dtype[math])
        model = model.to(device)
        model.eval()
huchen's avatar
huchen committed
286
287

        # build the data loader
Pan,Huiwen's avatar
Pan,Huiwen committed
288
289
290
291
292
293
294
        loader = data.get_loader(
            batch_size=batch_size,
            batch_first=args.batch_first,
            pad=True,
            repeat=args.repeat[batch_size],
            num_workers=0,
            )
huchen's avatar
huchen committed
295
296

        # build the translator object
Pan,Huiwen's avatar
Pan,Huiwen committed
297
298
299
300
301
302
303
304
305
306
307
        translator = Translator(
            model=model,
            tokenizer=tokenizer,
            loader=loader,
            beam_size=beam_size,
            max_seq_len=args.max_seq_len,
            len_norm_factor=args.len_norm_factor,
            len_norm_const=args.len_norm_const,
            cov_penalty_factor=args.cov_penalty_factor,
            print_freq=args.print_freq,
            )
huchen's avatar
huchen committed
308
309

        # execute the inference
Pan,Huiwen's avatar
Pan,Huiwen committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        output, stats = translator.run(
            calc_bleu=args.bleu,
            eval_path=args.output,
            summary=True,
            warmup=args.warmup,
            reference_path=args.reference,
            )

        # print translated outputs
        if not args.synthetic and (not args.output and args.rank == 0):
            logging.info(f'Translated output:')
            for out in output:
                print(out)

        key = (batch_size, beam_size)
        latency_table.add(key, {math: stats['runtimes']})
        throughput_table.add(key, {math: stats['throughputs']})
        accuracy_table.add(key, {math: stats['bleu']})

    if args.tables:
        accuracy_table.write('Inference accuracy', args.math)

        if 'fp16' in args.math and 'fp32' in args.math:
            relative = 'fp32'
        elif 'fp16' in args.math and 'tf32' in args.math:
            relative = 'tf32'
        else:
            relative = None

        if 'fp32' in args.math:
            throughput_table.write('Inference throughput', 'fp32')
        if 'tf32' in args.math:
            throughput_table.write('Inference throughput', 'tf32')
        if 'fp16' in args.math:
            throughput_table.write('Inference throughput', 'fp16',
                                   relative=relative)

        if 'fp32' in args.math:
            latency_table.write('Inference latency', 'fp32')
        if 'tf32' in args.math:
            latency_table.write('Inference latency', 'tf32')
        if 'fp16' in args.math:
            latency_table.write('Inference latency', 'fp16',
                                relative=relative, reverse_speedup=True)

    avg_throughput = np.array(stats['throughputs']).mean()
    avg_latency = np.array(stats['runtimes']).mean()
    summary = {
        'eval_throughput': avg_throughput,
        'eval_bleu': stats['bleu'],
        'eval_avg_latency': avg_latency,
        }
    for p in args.percentiles:
        summary[f'eval_{p}%_latency'] = np.percentile(stats['runtimes'], p)

    dllogger.log(step=tuple(), data=summary)

    passed = utils.benchmark(stats['bleu'], args.target_bleu,
                             stats['tokens_per_sec'], args.target_perf)
    return passed
huchen's avatar
huchen committed
370
371
372


if __name__ == '__main__':
Pan,Huiwen's avatar
Pan,Huiwen committed
373
374
375
    passed = main()
    if not passed:
        sys.exit(1)