test_infer.py 9.7 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

from tacotron2.text import text_to_sequence
import models
import torch
import argparse
import numpy as np
from scipy.io.wavfile import write

import sys

from inference import checkpoint_from_distributed, unwrap_distributed, MeasureTime, prepare_input_sequence, load_and_setup_model

import time
import dllogger as DLLogger
from dllogger import StdOutBackend, JSONStreamBackend, Verbosity

from apex import amp

from waveglow.denoiser import Denoiser

def parse_args(parser):
    """
    Parse commandline arguments.
    """
    parser.add_argument('--tacotron2', type=str,
                        help='full path to the Tacotron2 model checkpoint file')
    parser.add_argument('--waveglow', type=str,
                        help='full path to the WaveGlow model checkpoint file')
    parser.add_argument('-s', '--sigma-infer', default=0.6, type=float)
    parser.add_argument('-d', '--denoising-strength', default=0.01, type=float)
    parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
                        help='Sampling rate')

    run_mode = parser.add_mutually_exclusive_group()
    run_mode.add_argument('--fp16', action='store_true',
                        help='Run inference with FP16')
    run_mode.add_argument('--cpu', action='store_true',
                        help='Run inference on CPU')

    parser.add_argument('--log-file', type=str, default='nvlog.json',
                        help='Filename for logging')
    parser.add_argument('--stft-hop-length', type=int, default=256,
                        help='STFT hop length for estimating audio length from mel size')
    parser.add_argument('--num-iters', type=int, default=10,
                        help='Number of iterations')
    parser.add_argument('-il', '--input-length', type=int, default=64,
                        help='Input length')
    parser.add_argument('-bs', '--batch-size', type=int, default=1,
                        help='Batch size')


    return parser


def print_stats(measurements_all):

    throughput = measurements_all['throughput']
    preprocessing = measurements_all['pre_processing']
    type_conversion = measurements_all['type_conversion']
    storage = measurements_all['storage']
    data_transfer = measurements_all['data_transfer']
    postprocessing = [sum(p) for p in zip(type_conversion,storage,data_transfer)]
    latency = measurements_all['latency']
    waveglow_latency = measurements_all['waveglow_latency']
    tacotron2_latency = measurements_all['tacotron2_latency']
    denoiser_latency = measurements_all['denoiser_latency']
    num_mels_per_audio = measurements_all['num_mels_per_audio']

    latency.sort()

    cf_50 = max(latency[:int(len(latency)*0.50)])
    cf_90 = max(latency[:int(len(latency)*0.90)])
    cf_95 = max(latency[:int(len(latency)*0.95)])
    cf_99 = max(latency[:int(len(latency)*0.99)])
    cf_100 = max(latency[:int(len(latency)*1.0)])

    print("Throughput average (samples/sec)    = {:.0f}".format(np.mean(throughput)))
    print("Preprocessing average (seconds)     = {:.4f}".format(np.mean(preprocessing)))
    print("Postprocessing average (seconds)    = {:.4f}".format(np.mean(postprocessing)))
    print("Number of mels per audio average    = {:.0f}".format(np.mean(num_mels_per_audio)))
    print("Tacotron2 latency average (seconds) = {:.2f}".format(np.mean(tacotron2_latency)))
    print("WaveGlow latency average (seconds)  = {:.2f}".format(np.mean(waveglow_latency)))
    print("Denoiser latency average (seconds)  = {:.4f}".format(np.mean(denoiser_latency)))
    print("Latency average (seconds)           = {:.2f}".format(np.mean(latency)))
    print("Latency std (seconds)               = {:.2f}".format(np.std(latency)))
    print("Latency cl 50 (seconds)             = {:.2f}".format(cf_50))
    print("Latency cl 90 (seconds)             = {:.2f}".format(cf_90))
    print("Latency cl 95 (seconds)             = {:.2f}".format(cf_95))
    print("Latency cl 99 (seconds)             = {:.2f}".format(cf_99))
    print("Latency cl 100 (seconds)            = {:.2f}".format(cf_100))


def main():
    """
    Launches text to speech (inference).
    Inference is executed on a single GPU or CPU.
    """
    parser = argparse.ArgumentParser(
        description='PyTorch Tacotron 2 Inference')
    parser = parse_args(parser)
    args, unknown_args = parser.parse_known_args()

    DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.log_file),
                            StdOutBackend(Verbosity.VERBOSE)])
    for k,v in vars(args).items():
        DLLogger.log(step="PARAMETER", data={k:v})
    DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})

    measurements_all = {"pre_processing": [],
                        "tacotron2_latency": [],
                        "waveglow_latency": [],
                        "denoiser_latency": [],
                        "latency": [],
                        "type_conversion": [],
                        "data_transfer": [],
                        "storage": [],
                        "tacotron2_items_per_sec": [],
                        "waveglow_items_per_sec": [],
                        "num_mels_per_audio": [],
                        "throughput": []}

    print("args:", args, unknown_args)

    tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2,
                                     args.fp16, args.cpu, forward_is_infer=True)
    waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow,
                                    args.fp16, args.cpu, forward_is_infer=True)
    denoiser = Denoiser(waveglow)
    if not args.cpu:
        denoiser.cuda()

    texts = ["The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves."]
    texts = [texts[0][:args.input_length]]
    texts = texts*args.batch_size

    warmup_iters = 3

    for iter in range(args.num_iters):

        measurements = {}

        with MeasureTime(measurements, "pre_processing", args.cpu):
            sequences_padded, input_lengths = prepare_input_sequence(texts, args.cpu)

        with torch.no_grad():
            with MeasureTime(measurements, "latency", args.cpu):
                with MeasureTime(measurements, "tacotron2_latency", args.cpu):
                    mel, mel_lengths, _ = tacotron2.infer(sequences_padded, input_lengths)

                with MeasureTime(measurements, "waveglow_latency", args.cpu):
                    audios = waveglow.infer(mel, sigma=args.sigma_infer)

                num_mels = mel.size(0)*mel.size(2)
                num_samples = audios.size(0)*audios.size(1)

                with MeasureTime(measurements, "type_conversion", args.cpu):
                    audios = audios.float()

                with torch.no_grad(), MeasureTime(measurements, "denoiser_latency", args.cpu):
                    audios = denoiser(audios, strength=args.denoising_strength).squeeze(1)

        with MeasureTime(measurements, "data_transfer", args.cpu):
            audios = audios.cpu()

        with MeasureTime(measurements, "storage", args.cpu):
            audios = audios.numpy()
            for i, audio in enumerate(audios):
                audio_path = "audio_"+str(i)+".wav"
                write(audio_path, args.sampling_rate,
                      audio[:mel_lengths[i]*args.stft_hop_length])

        measurements['tacotron2_items_per_sec'] = num_mels/measurements['tacotron2_latency']
        measurements['waveglow_items_per_sec'] = num_samples/measurements['waveglow_latency']
        measurements['num_mels_per_audio'] = mel.size(2)
        measurements['throughput'] = num_samples/measurements['latency']

        if iter >= warmup_iters:
            for k,v in measurements.items():
                measurements_all[k].append(v)
                DLLogger.log(step=(iter-warmup_iters), data={k: v})

    DLLogger.flush()

    print_stats(measurements_all)

if __name__ == '__main__':
    main()