utils.py 3.41 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

import numpy as np
from scipy.io.wavfile import read
import torch
import os

import argparse
import json

class ParseFromConfigFile(argparse.Action):

    def __init__(self, option_strings, type, dest, help=None, required=False):
        super(ParseFromConfigFile, self).__init__(option_strings=option_strings, type=type, dest=dest, help=help, required=required)

    def __call__(self, parser, namespace, values, option_string):
        with open(values, 'r') as f:
            data = json.load(f)

        for group in data.keys():
            for k,v in data[group].items():
                underscore_k = k.replace('-', '_')
                setattr(namespace, underscore_k, v)

def get_mask_from_lengths(lengths):
    max_len = torch.max(lengths).item()
    ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype)
    mask = (ids < lengths.unsqueeze(1)).byte()
    mask = torch.le(mask, 0)
    return mask


def load_wav_to_torch(full_path):
    sampling_rate, data = read(full_path)
    return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(dataset_path, filename, split="|"):
    with open(filename, encoding='utf-8') as f:
        def split_line(root, line):
            parts = line.strip().split(split)
            if len(parts) > 2:
                raise Exception(
                    "incorrect line format for file: {}".format(filename))
            path = os.path.join(root, parts[0])
            text = parts[1]
            return path,text
        filepaths_and_text = [split_line(dataset_path, line) for line in f]
    return filepaths_and_text


def to_gpu(x):
    x = x.contiguous()

    if torch.cuda.is_available():
        x = x.cuda(non_blocking=True)
    return x