cleaners.py 2.39 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
""" from https://github.com/keithito/tacotron """

'''
Cleaners are transformations that run over the input text at both training and eval time.

Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
  1. "english_cleaners" for English text
  2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
     the Unidecode library (https://pypi.python.org/pypi/Unidecode)
  3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
     the symbols in symbols.py to match your data).
'''

import re
from .numbers import normalize_numbers
from .unidecoder import unidecoder


# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
  ('mrs', 'misess'),
  ('mr', 'mister'),
  ('dr', 'doctor'),
  ('st', 'saint'),
  ('co', 'company'),
  ('jr', 'junior'),
  ('maj', 'major'),
  ('gen', 'general'),
  ('drs', 'doctors'),
  ('rev', 'reverend'),
  ('lt', 'lieutenant'),
  ('hon', 'honorable'),
  ('sgt', 'sergeant'),
  ('capt', 'captain'),
  ('esq', 'esquire'),
  ('ltd', 'limited'),
  ('col', 'colonel'),
  ('ft', 'fort'),
]]


def expand_abbreviations(text):
  for regex, replacement in _abbreviations:
    text = re.sub(regex, replacement, text)
  return text


def expand_numbers(text):
  return normalize_numbers(text)


def lowercase(text):
  return text.lower()


def collapse_whitespace(text):
  return re.sub(_whitespace_re, ' ', text)


def convert_to_ascii(text):
  return unidecoder(text)


def basic_cleaners(text):
  '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
  text = lowercase(text)
  text = collapse_whitespace(text)
  return text


def transliteration_cleaners(text):
  '''Pipeline for non-English text that transliterates to ASCII.'''
  text = convert_to_ascii(text)
  text = lowercase(text)
  text = collapse_whitespace(text)
  return text


def english_cleaners(text):
  '''Pipeline for English text, including number and abbreviation expansion.'''
  text = convert_to_ascii(text)
  text = lowercase(text)
  text = expand_numbers(text)
  text = expand_abbreviations(text)
  text = collapse_whitespace(text)
  return text