entrypoints.py 7.59 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# *****************************************************************************
#  Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

import urllib.request
import torch
import os
import sys

#from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py
def checkpoint_from_distributed(state_dict):
    """
    Checks whether checkpoint was generated by DistributedDataParallel. DDP
    wraps model in additional "module.", it needs to be unwrapped for single
    GPU inference.
    :param state_dict: model's state dict
    """
    ret = False
    for key, _ in state_dict.items():
        if key.find('module.') != -1:
            ret = True
            break
    return ret


# from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py
def unwrap_distributed(state_dict):
    """
    Unwraps model from DistributedDataParallel.
    DDP wraps model in additional "module.", it needs to be removed for single
    GPU inference.
    :param state_dict: model's state dict
    """
    new_state_dict = {}
    for key, value in state_dict.items():
        new_key = key.replace('module.1.', '')
        new_key = new_key.replace('module.', '')
        new_state_dict[new_key] = value
    return new_state_dict

def _download_checkpoint(checkpoint, force_reload):
    model_dir = os.path.join(torch.hub._get_torch_home(), 'checkpoints')
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    ckpt_file = os.path.join(model_dir, os.path.basename(checkpoint))
    if not os.path.exists(ckpt_file) or force_reload:
        sys.stderr.write('Downloading checkpoint from {}\n'.format(checkpoint))
        urllib.request.urlretrieve(checkpoint, ckpt_file)
    return ckpt_file

def nvidia_tacotron2(pretrained=True, **kwargs):
    """Constructs a Tacotron 2 model (nn.module with additional infer(input) method).
    For detailed information on model input and output, training recipies, inference and performance
    visit: github.com/NVIDIA/DeepLearningExamples and/or ngc.nvidia.com
    Args (type[, default value]):
        pretrained (bool, True): If True, returns a model pretrained on LJ Speech dataset.
        model_math (str, 'fp32'): returns a model in given precision ('fp32' or 'fp16')
        n_symbols (int, 148): Number of symbols used in a sequence passed to the prenet, see
                              https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/tacotron2/text/symbols.py
        p_attention_dropout (float, 0.1): dropout probability on attention LSTM (1st LSTM layer in decoder)
        p_decoder_dropout (float, 0.1): dropout probability on decoder LSTM (2nd LSTM layer in decoder)
        max_decoder_steps (int, 1000): maximum number of generated mel spectrograms during inference
    """

    from tacotron2 import model as tacotron2

    fp16 = "model_math" in kwargs and kwargs["model_math"] == "fp16"
    force_reload = "force_reload" in kwargs and kwargs["force_reload"]

    if pretrained:
        if fp16:
            checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/tacotron2_pyt_ckpt_amp/versions/19.09.0/files/nvidia_tacotron2pyt_fp16_20190427'
        else:
            checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/tacotron2_pyt_ckpt_fp32/versions/19.09.0/files/nvidia_tacotron2pyt_fp32_20190427'
        ckpt_file = _download_checkpoint(checkpoint, force_reload)
        ckpt = torch.load(ckpt_file)
        state_dict = ckpt['state_dict']
        if checkpoint_from_distributed(state_dict):
            state_dict = unwrap_distributed(state_dict)
        config = ckpt['config']
    else:
        config = {'mask_padding': False, 'n_mel_channels': 80, 'n_symbols': 148,
                  'symbols_embedding_dim': 512, 'encoder_kernel_size': 5,
                  'encoder_n_convolutions': 3, 'encoder_embedding_dim': 512,
                  'attention_rnn_dim': 1024, 'attention_dim': 128,
                  'attention_location_n_filters': 32,
                  'attention_location_kernel_size': 31, 'n_frames_per_step': 1,
                  'decoder_rnn_dim': 1024, 'prenet_dim': 256,
                  'max_decoder_steps': 1000, 'gate_threshold': 0.5,
                  'p_attention_dropout': 0.1, 'p_decoder_dropout': 0.1,
                  'postnet_embedding_dim': 512, 'postnet_kernel_size': 5,
                  'postnet_n_convolutions': 5, 'decoder_no_early_stopping': False}
        for k,v in kwargs.items():
            if k in config.keys():
                config[k] = v

    m = tacotron2.Tacotron2(**config)

    if pretrained:
        m.load_state_dict(state_dict)

    return m

def nvidia_tts_utils():
    
    class Processing:
        
        from tacotron2.text import text_to_sequence
        
        @staticmethod
        def pad_sequences(batch):
            # Right zero-pad all one-hot text sequences to max input length
            input_lengths, ids_sorted_decreasing = torch.sort(
                torch.LongTensor([len(x) for x in batch]),
                dim=0, descending=True)
            max_input_len = input_lengths[0]

            text_padded = torch.LongTensor(len(batch), max_input_len)
            text_padded.zero_()
            for i in range(len(ids_sorted_decreasing)):
                text = batch[ids_sorted_decreasing[i]]
                text_padded[i, :text.size(0)] = text

            return text_padded, input_lengths
        
        @staticmethod
        def prepare_input_sequence(texts, cpu_run=False):

            d = []
            for i,text in enumerate(texts):
                d.append(torch.IntTensor(
                    Processing.text_to_sequence(text, ['english_cleaners'])[:]))

            text_padded, input_lengths = Processing.pad_sequences(d)
            if not cpu_run:
                text_padded = text_padded.cuda().long()
                input_lengths = input_lengths.cuda().long()
            else:
                text_padded = text_padded.long()
                input_lengths = input_lengths.long()

            return text_padded, input_lengths
    
    return Processing()