data_function.py 6.73 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

import torch
import torch.utils.data

import tacotron2_common.layers as layers
from tacotron2_common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu
from tacotron2.text import text_to_sequence

class TextMelLoader(torch.utils.data.Dataset):
    """
        1) loads audio,text pairs
        2) normalizes text and converts them to sequences of one-hot vectors
        3) computes mel-spectrograms from audio files.
    """
    def __init__(self, dataset_path, audiopaths_and_text, args):
        self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text)
        self.text_cleaners = args.text_cleaners
        self.max_wav_value = args.max_wav_value
        self.sampling_rate = args.sampling_rate
        self.load_mel_from_disk = args.load_mel_from_disk
        self.stft = layers.TacotronSTFT(
            args.filter_length, args.hop_length, args.win_length,
            args.n_mel_channels, args.sampling_rate, args.mel_fmin,
            args.mel_fmax)

    def get_mel_text_pair(self, audiopath_and_text):
        # separate filename and text
        audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
        len_text = len(text)
        text = self.get_text(text)
        mel = self.get_mel(audiopath)
        return (text, mel, len_text)

    def get_mel(self, filename):
        if not self.load_mel_from_disk:
            audio, sampling_rate = load_wav_to_torch(filename)
            if sampling_rate != self.stft.sampling_rate:
                raise ValueError("{} {} SR doesn't match target {} SR".format(
                    sampling_rate, self.stft.sampling_rate))
            audio_norm = audio / self.max_wav_value
            audio_norm = audio_norm.unsqueeze(0)
            audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
            melspec = self.stft.mel_spectrogram(audio_norm)
            melspec = torch.squeeze(melspec, 0)
        else:
            melspec = torch.load(filename)
            assert melspec.size(0) == self.stft.n_mel_channels, (
                'Mel dimension mismatch: given {}, expected {}'.format(
                    melspec.size(0), self.stft.n_mel_channels))

        return melspec

    def get_text(self, text):
        text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
        return text_norm

    def __getitem__(self, index):
        return self.get_mel_text_pair(self.audiopaths_and_text[index])

    def __len__(self):
        return len(self.audiopaths_and_text)


class TextMelCollate():
    """ Zero-pads model inputs and targets based on number of frames per setep
    """
    def __init__(self, n_frames_per_step):
        self.n_frames_per_step = n_frames_per_step

    def __call__(self, batch):
        """Collate's training batch from normalized text and mel-spectrogram
        PARAMS
        ------
        batch: [text_normalized, mel_normalized]
        """
        # Right zero-pad all one-hot text sequences to max input length
        input_lengths, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([len(x[0]) for x in batch]),
            dim=0, descending=True)
        max_input_len = input_lengths[0]

        text_padded = torch.LongTensor(len(batch), max_input_len)
        text_padded.zero_()
        for i in range(len(ids_sorted_decreasing)):
            text = batch[ids_sorted_decreasing[i]][0]
            text_padded[i, :text.size(0)] = text

        # Right zero-pad mel-spec
        num_mels = batch[0][1].size(0)
        max_target_len = max([x[1].size(1) for x in batch])
        if max_target_len % self.n_frames_per_step != 0:
            max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
            assert max_target_len % self.n_frames_per_step == 0

        # include mel padded and gate padded
        mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
        mel_padded.zero_()
        gate_padded = torch.FloatTensor(len(batch), max_target_len)
        gate_padded.zero_()
        output_lengths = torch.LongTensor(len(batch))
        for i in range(len(ids_sorted_decreasing)):
            mel = batch[ids_sorted_decreasing[i]][1]
            mel_padded[i, :, :mel.size(1)] = mel
            gate_padded[i, mel.size(1)-1:] = 1
            output_lengths[i] = mel.size(1)

        # count number of items - characters in text
        len_x = [x[2] for x in batch]
        len_x = torch.Tensor(len_x)
        return text_padded, input_lengths, mel_padded, gate_padded, \
            output_lengths, len_x

def batch_to_gpu(batch):
    text_padded, input_lengths, mel_padded, gate_padded, \
        output_lengths, len_x = batch
    text_padded = to_gpu(text_padded).long()
    input_lengths = to_gpu(input_lengths).long()
    max_len = torch.max(input_lengths.data).item()
    mel_padded = to_gpu(mel_padded).float()
    gate_padded = to_gpu(gate_padded).float()
    output_lengths = to_gpu(output_lengths).long()
    x = (text_padded, input_lengths, mel_padded, max_len, output_lengths)
    y = (mel_padded, gate_padded)
    len_x = torch.sum(output_lengths)
    return (x, y, len_x)