model.py 8.55 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import sys
from os.path import abspath, dirname
sys.path.append(abspath(dirname(__file__)+'/../'))

from common.text import symbols
from inference import load_model_from_ckpt
import models
from torch.utils.data import DataLoader
import torch
import numpy as np

def update_argparser(parser):

    ### copy-paste from ./fastpitch/arg_parser.py
    io = parser.add_argument_group('io parameters')
    io.add_argument('--n-mel-channels', default=80, type=int,
                    help='Number of bins in mel-spectrograms')

    symbols = parser.add_argument_group('symbols parameters')
    symbols.add_argument('--n-symbols', default=148, type=int,
                         help='Number of symbols in dictionary')
    symbols.add_argument('--padding-idx', default=0, type=int,
                         help='Index of padding symbol in dictionary')
    symbols.add_argument('--symbols-embedding-dim', default=384, type=int,
                         help='Input embedding dimension')

    text_processing = parser.add_argument_group('Text processing parameters')
    text_processing.add_argument('--symbol-set', type=str, default='english_basic',
                                 help='Define symbol set for input text')

    in_fft = parser.add_argument_group('input FFT parameters')
    in_fft.add_argument('--in-fft-n-layers', default=6, type=int,
                        help='Number of FFT blocks')
    in_fft.add_argument('--in-fft-n-heads', default=1, type=int,
                        help='Number of attention heads')
    in_fft.add_argument('--in-fft-d-head', default=64, type=int,
                        help='Dim of attention heads')
    in_fft.add_argument('--in-fft-conv1d-kernel-size', default=3, type=int,
                        help='Conv-1D kernel size')
    in_fft.add_argument('--in-fft-conv1d-filter-size', default=1536, type=int,
                        help='Conv-1D filter size')
    in_fft.add_argument('--in-fft-output-size', default=384, type=int,
                        help='Output dim')
    in_fft.add_argument('--p-in-fft-dropout', default=0.1, type=float,
                        help='Dropout probability')
    in_fft.add_argument('--p-in-fft-dropatt', default=0.1, type=float,
                        help='Multi-head attention dropout')
    in_fft.add_argument('--p-in-fft-dropemb', default=0.0, type=float,
                        help='Dropout added to word+positional embeddings')

    out_fft = parser.add_argument_group('output FFT parameters')
    out_fft.add_argument('--out-fft-n-layers', default=6, type=int,
                         help='Number of FFT blocks')
    out_fft.add_argument('--out-fft-n-heads', default=1, type=int,
                         help='Number of attention heads')
    out_fft.add_argument('--out-fft-d-head', default=64, type=int,
                         help='Dim of attention head')
    out_fft.add_argument('--out-fft-conv1d-kernel-size', default=3, type=int,
                         help='Conv-1D kernel size')
    out_fft.add_argument('--out-fft-conv1d-filter-size', default=1536, type=int,
                         help='Conv-1D filter size')
    out_fft.add_argument('--out-fft-output-size', default=384, type=int,
                         help='Output dim')
    out_fft.add_argument('--p-out-fft-dropout', default=0.1, type=float,
                         help='Dropout probability for out_fft')
    out_fft.add_argument('--p-out-fft-dropatt', default=0.1, type=float,
                         help='Multi-head attention dropout')
    out_fft.add_argument('--p-out-fft-dropemb', default=0.0, type=float,
                         help='Dropout added to word+positional embeddings')

    dur_pred = parser.add_argument_group('duration predictor parameters')
    dur_pred.add_argument('--dur-predictor-kernel-size', default=3, type=int,
                          help='Duration predictor conv-1D kernel size')
    dur_pred.add_argument('--dur-predictor-filter-size', default=256, type=int,
                          help='Duration predictor conv-1D filter size')
    dur_pred.add_argument('--p-dur-predictor-dropout', default=0.1, type=float,
                          help='Dropout probability for duration predictor')
    dur_pred.add_argument('--dur-predictor-n-layers', default=2, type=int,
                          help='Number of conv-1D layers')

    pitch_pred = parser.add_argument_group('pitch predictor parameters')
    pitch_pred.add_argument('--pitch-predictor-kernel-size', default=3, type=int,
                            help='Pitch predictor conv-1D kernel size')
    pitch_pred.add_argument('--pitch-predictor-filter-size', default=256, type=int,
                            help='Pitch predictor conv-1D filter size')
    pitch_pred.add_argument('--p-pitch-predictor-dropout', default=0.1, type=float,
                            help='Pitch probability for pitch predictor')
    pitch_pred.add_argument('--pitch-predictor-n-layers', default=2, type=int,
                            help='Number of conv-1D layers')

    energy_pred = parser.add_argument_group('energy predictor parameters')
    energy_pred.add_argument('--energy-conditioning', type=bool, default=True)
    energy_pred.add_argument('--energy-predictor-kernel-size', default=3, type=int,
                            help='Pitch predictor conv-1D kernel size')
    energy_pred.add_argument('--energy-predictor-filter-size', default=256, type=int,
                            help='Pitch predictor conv-1D filter size')
    energy_pred.add_argument('--p-energy-predictor-dropout', default=0.1, type=float,
                            help='Pitch probability for energy predictor')
    energy_pred.add_argument('--energy-predictor-n-layers', default=2, type=int,
                            help='Number of conv-1D layers')

    ###~copy-paste from ./fastpitch/arg_parser.py

    parser.add_argument('--checkpoint', type=str,
                        help='Full path to the FastPitch checkpoint file')
    parser.add_argument('--torchscript', action='store_true',
                        help='Apply TorchScript')
    parser.add_argument('--ema', action='store_true',
                        help='Use EMA averaged model \
(if saved in checkpoints)')

    cond = parser.add_argument_group('conditioning parameters')
    cond.add_argument('--pitch-embedding-kernel-size', default=3, type=int,
                      help='Pitch embedding conv-1D kernel size')
    cond.add_argument('--energy-embedding-kernel-size', default=3, type=int,
                      help='Pitch embedding conv-1D kernel size')
    cond.add_argument('--speaker-emb-weight', type=float, default=1.0,
                      help='Scale speaker embedding')
    cond.add_argument('--n-speakers', type=int, default=1,
                      help='Number of speakers in the model.')
    cond.add_argument('--pitch-conditioning-formants', default=1, type=int,
                      help='Number of speech formants to condition on.')
    parser.add_argument("--precision", type=str, default="fp32",
                        choices=["fp32", "fp16"],
                        help="PyTorch model precision")
    parser.add_argument("--output-format", type=str, required=True,
                        help="Output format")


def get_model(**model_args):

    import argparse
    args = argparse.Namespace(**model_args)

    model_config = models.get_model_config(model_name="FastPitch",
                                           args=args)

    jittable = True if 'ts-' in args.output_format else False

    model = models.get_model(model_name="FastPitch",
                             model_config=model_config,
                             device='cuda',
                             forward_is_infer=True,
                             jitable=jittable)
    model = load_model_from_ckpt(args.checkpoint, args.ema, model)
    if args.precision == "fp16":
        model = model.half()
    model.eval()
    tensor_names = {"inputs": ["INPUT__0"],
                    "outputs" : ["OUTPUT__0", "OUTPUT__1",
                                 "OUTPUT__2", "OUTPUT__3", "OUTPUT__4"]}

    return model, tensor_names