convert_model.py 6.52 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python3

# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
`convert_model.py` script allows to convert between model formats with additional model optimizations
for faster inference.
It converts model from results of get_model function.

Currently supported input and output formats are:

  - inputs
    - `tf-estimator` - `get_model` function returning Tensorflow Estimator
    - `tf-keras` - `get_model` function returning Tensorflow Keras Model
    - `tf-savedmodel` - Tensorflow SavedModel binary
    - `pyt` - `get_model` function returning PyTorch Module
  - output
    - `tf-savedmodel` - Tensorflow saved model
    - `tf-trt` - TF-TRT saved model
    - `ts-trace` - PyTorch traced ScriptModule
    - `ts-script` - PyTorch scripted ScriptModule
    - `onnx` - ONNX
    - `trt` - TensorRT plan file

For tf-keras input you can use:
  - --large-model flag - helps loading model which exceeds maximum protobuf size of 2GB
  - --tf-allow-growth flag - control limiting GPU memory growth feature
    (https://www.tensorflow.org/guide/gpu#limiting_gpu_memory_growth). By default it is disabled.
"""

import argparse
import logging
import os
from pathlib import Path

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1"

# method from PEP-366 to support relative import in executed modules
if __name__ == "__main__" and __package__ is None:
    __package__ = Path(__file__).parent.name

from .deployment_toolkit.args import ArgParserGenerator
from .deployment_toolkit.core import (
    DATALOADER_FN_NAME,
    BaseConverter,
    BaseLoader,
    BaseSaver,
    Format,
    Precision,
    load_from_file,
)
from .deployment_toolkit.extensions import converters, loaders, savers

LOGGER = logging.getLogger("convert_model")

INPUT_MODEL_TYPES = [Format.TF_ESTIMATOR, Format.TF_KERAS, Format.TF_SAVEDMODEL, Format.PYT]
OUTPUT_MODEL_TYPES = [Format.TF_SAVEDMODEL, Format.TF_TRT, Format.ONNX, Format.TRT, Format.TS_TRACE, Format.TS_SCRIPT]


def _get_args():
    parser = argparse.ArgumentParser(description="Script for conversion between model formats.", allow_abbrev=False)
    parser.add_argument("--input-path", help="Path to input model file (python module or binary file)", required=True)
    parser.add_argument(
        "--input-type", help="Input model type", choices=[f.value for f in INPUT_MODEL_TYPES], required=True
    )
    parser.add_argument("--output-path", help="Path to output model file", required=True)
    parser.add_argument(
        "--output-type", help="Output model type", choices=[f.value for f in OUTPUT_MODEL_TYPES], required=True
    )
    parser.add_argument("--dataloader", help="Path to python module containing data loader")
    parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False)
    parser.add_argument(
        "--ignore-unknown-parameters",
        help="Ignore unknown parameters (argument often used in CI where set of arguments is constant)",
        action="store_true",
        default=False,
    )

    args, unparsed_args = parser.parse_known_args()

    Loader: BaseLoader = loaders.get(args.input_type)
    ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser)

    converter_name = f"{args.input_type}--{args.output_type}"
    Converter: BaseConverter = converters.get(converter_name)
    if Converter is not None:
        ArgParserGenerator(Converter).update_argparser(parser)

    Saver: BaseSaver = savers.get(args.output_type)
    ArgParserGenerator(Saver).update_argparser(parser)

    if args.dataloader is not None:
        get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME)
        ArgParserGenerator(get_dataloader_fn).update_argparser(parser)

    if args.ignore_unknown_parameters:
        args, unknown_args = parser.parse_known_args()
        LOGGER.warning(f"Got additional args {unknown_args}")
    else:
        args = parser.parse_args()
    return args


def main():
    args = _get_args()

    log_level = logging.INFO if not args.verbose else logging.DEBUG
    log_format = "%(asctime)s %(levelname)s %(name)s %(message)s"
    logging.basicConfig(level=log_level, format=log_format)

    LOGGER.info(f"args:")
    for key, value in vars(args).items():
        LOGGER.info(f"    {key} = {value}")

    requested_model_precision = Precision(args.precision)
    dataloader_fn = None

    # if conversion is required, temporary change model load precision to that required by converter
    # it is for TensorRT converters which require fp32 models for all requested precisions
    converter_name = f"{args.input_type}--{args.output_type}"
    Converter: BaseConverter = converters.get(converter_name)
    if Converter:
        args.precision = Converter.required_source_model_precision(requested_model_precision).value

    Loader: BaseLoader = loaders.get(args.input_type)
    loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args)
    model = loader.load(args.input_path)


    LOGGER.info("inputs: %s", model.inputs)
    LOGGER.info("outputs: %s", model.outputs)

    if Converter:  # if conversion is needed
        # dataloader must much source model precision - so not recovering it yet
        if args.dataloader is not None:

            if args.p_arpabet > 0.0:
                from common.text import cmudict
                cmudict.initialize(args.cmudict_path, args.heteronyms_path)

            get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME)
            dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args)

    # recover precision to that requested by user
    args.precision = requested_model_precision.value

    if Converter:
        converter = ArgParserGenerator(Converter).from_args(args)
        model = converter.convert(model, dataloader_fn=dataloader_fn)

    Saver: BaseSaver = savers.get(args.output_type)
    saver = ArgParserGenerator(Saver).from_args(args)
    saver.save(model, args.output_path)

    return 0


if __name__ == "__main__":
    main()