"backend/vscode:/vscode.git/clone" did not exist on "ae567796ee304a114f5ec97966b947b19d9b5ac4"
train.py 27.3 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#!/usr/bin/env python
import argparse
import logging
import os
from ast import literal_eval

import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
from mlperf_logging.mllog import constants

import seq2seq.data.config as config
import seq2seq.train.trainer as trainers
import seq2seq.utils as utils
from seq2seq.data.dataset import LazyParallelDataset, PreprocessedDataset
from seq2seq.data.dataset import TextDataset
from seq2seq.data.tokenizer import Tokenizer
from seq2seq.inference.inference import Translator
from seq2seq.models.gnmt import GNMT
from seq2seq.train.smoothing import LabelSmoothing
from seq2seq.utils import log_start, log_end, log_event, configure_logger
from seq2seq.train.lr_scheduler import WarmupMultiStepLR


def parse_args():
    """
    Parse commandline arguments.
    """
    def exclusive_group(group, name, default, help):
        destname = name.replace('-', '_')
        subgroup = group.add_mutually_exclusive_group(required=False)
        subgroup.add_argument(f'--{name}', dest=f'{destname}',
                              action='store_true',
                              help=f'{help} (use \'--no-{name}\' to disable)')
        subgroup.add_argument(f'--no-{name}', dest=f'{destname}',
                              action='store_false', help=argparse.SUPPRESS)
        subgroup.set_defaults(**{destname: default})

    parser = argparse.ArgumentParser(
        description='GNMT training',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # dataset
    dataset = parser.add_argument_group('dataset setup')
    dataset.add_argument('--dataset-dir', default='data/wmt16_de_en',
                         help='path to the directory with training/test data')
    dataset.add_argument('--max-size', default=None, type=int,
                         help='use at most MAX_SIZE elements from training \
                         dataset (useful for benchmarking), by default \
                         uses entire dataset')
    dataset.add_argument('--preproc-data-dir', default='/tmp/preprocessed',
                         help='path to the directory with preprocessed \
                         training/test data')
    exclusive_group(group=dataset, name='use-preproc-data', default=True,
                    help='use preprocessed dataset')

    # results
    results = parser.add_argument_group('results setup')
    results.add_argument('--results-dir', default='results',
                         help='path to directory with results, it will be \
                         automatically created if it does not exist')
    results.add_argument('--save', default='gnmt',
                         help='defines subdirectory within RESULTS_DIR for \
                         results from this training run')
    results.add_argument('--print-freq', default=10, type=int,
                         help='print log every PRINT_FREQ batches')

    # model
    model = parser.add_argument_group('model setup')
    model.add_argument('--hidden-size', default=1024, type=int,
                       help='model hidden size')
    model.add_argument('--num-layers', default=4, type=int,
                       help='number of RNN layers in encoder and in decoder')
    model.add_argument('--dropout', default=0.2, type=float,
                       help='dropout applied to input of RNN cells')

    exclusive_group(group=model, name='share-embedding', default=True,
                    help='use shared embeddings for encoder and decoder')

    model.add_argument('--smoothing', default=0.1, type=float,
                       help='label smoothing, if equal to zero model will use \
                       CrossEntropyLoss, if not zero model will be trained \
                       with label smoothing loss')

    # setup
    general = parser.add_argument_group('general setup')
    general.add_argument('--math', default='fp16',
                         choices=['fp32', 'fp16'],
                         help='arithmetic type')
    general.add_argument('--seed', default=None, type=int,
                         help='master seed for random number generators, if \
                         "seed" is undefined then the master seed will be \
                         sampled from random.SystemRandom()')
    general.add_argument('--prealloc-mode', default='always', type=str,
                         choices=['off', 'once', 'always'],
                         help='controls preallocation')

    exclusive_group(group=general, name='eval', default=False,
                    help='run validation and test after every epoch')
    exclusive_group(group=general, name='env', default=False,
                    help='print info about execution env')
    exclusive_group(group=general, name='cuda', default=True,
                    help='enables cuda')
    exclusive_group(group=general, name='cudnn', default=True,
                    help='enables cudnn')
    exclusive_group(group=general, name='log-all-ranks', default=True,
                    help='enables logging from all distributed ranks, if \
                    disabled then only logs from rank 0 are reported')
    exclusive_group(group=general, name='fused-attention', default=False,
                    help='enables fused attention')
    exclusive_group(group=general, name='fused-xentropy', default=True,
                    help='enables fused cross cross entropy with label \
                    smoothing')

    # training
    training = parser.add_argument_group('training setup')
    training.add_argument('--train-batch-size', default=128, type=int,
                          help='training batch size per worker')
    training.add_argument('--train-global-batch-size', default=None, type=int,
                          help='global training batch size, this argument \
                          does not have to be defined, if it is defined it \
                          will be used to automatically \
                          compute train_iter_size \
                          using the equation: train_iter_size = \
                          train_global_batch_size // (train_batch_size * \
                          world_size)')
    training.add_argument('--train-iter-size', metavar='N', default=1,
                          type=int,
                          help='training iter size, training loop will \
                          accumulate gradients over N iterations and execute \
                          optimizer every N steps')
    training.add_argument('--epochs', default=8, type=int,
                          help='max number of training epochs')

    training.add_argument('--grad-clip', default=5.0, type=float,
                          help='enables gradient clipping and sets maximum \
                          norm of gradients')
    training.add_argument('--max-length-train', default=50, type=int,
                          help='maximum sequence length for training \
                          (including special BOS and EOS tokens)')
    training.add_argument('--min-length-train', default=0, type=int,
                          help='minimum sequence length for training \
                          (including special BOS and EOS tokens)')
    training.add_argument('--train-loader-workers', default=1, type=int,
                          help='number of workers for training data loading')
    training.add_argument('--batching', default='bucketing', type=str,
                          choices=['random', 'sharding', 'bucketing'],
                          help='select batching algorithm')
    training.add_argument('--shard-size', default=80, type=int,
                          help='shard size for "sharding" batching algorithm, \
                          in multiples of global batch size')
    training.add_argument('--num-buckets', default=5, type=int,
                          help='number of buckets for "bucketing" batching \
                          algorithm')

    # optimizer
    optimizer = parser.add_argument_group('optimizer setup')
    optimizer.add_argument('--optimizer', type=str, default='Adam',
                           help='training optimizer')
    optimizer.add_argument('--lr', type=float, default=1.00e-3,
                           help='learning rate')
    optimizer.add_argument('--optimizer-extra', type=str,
                           default="{}",
                           help='extra options for the optimizer')

    # mixed precision loss scaling
    loss_scaling = parser.add_argument_group('mixed precision loss scaling \
                                             setup')
    loss_scaling.add_argument('--init-scale', type=float, default=1024,
                              help='initial loss scale')
    loss_scaling.add_argument('--upscale-interval', type=float, default=128,
                              help='loss upscaling interval')

    # scheduler
    scheduler = parser.add_argument_group('learning rate scheduler setup')
    scheduler.add_argument('--warmup-steps', type=str, default='200',
                           help='number of learning rate warmup iterations')
    scheduler.add_argument('--remain-steps', type=str, default='0.666',
                           help='starting iteration for learning rate decay')
    scheduler.add_argument('--decay-interval', type=str, default='None',
                           help='interval between learning rate decay steps')
    scheduler.add_argument('--decay-steps', type=int, default=4,
                           help='max number of learning rate decay steps')
    scheduler.add_argument('--decay-factor', type=float, default=0.5,
                           help='learning rate decay factor')

    # test
    test = parser.add_argument_group('test setup')
    test.add_argument('--test-batch-size', default=128, type=int,
                      help='batch size for test')
    test.add_argument('--max-length-test', default=150, type=int,
                      help='maximum sequence length for test \
                      (including special BOS and EOS tokens)')
    test.add_argument('--min-length-test', default=0, type=int,
                      help='minimum sequence length for test \
                      (including special BOS and EOS tokens)')
    test.add_argument('--beam-size', default=5, type=int,
                      help='beam size')
    test.add_argument('--len-norm-factor', default=0.6, type=float,
                      help='length normalization factor')
    test.add_argument('--cov-penalty-factor', default=0.1, type=float,
                      help='coverage penalty factor')
    test.add_argument('--len-norm-const', default=5.0, type=float,
                      help='length normalization constant')
    test.add_argument('--intra-epoch-eval', metavar='N', default=0, type=int,
                      help='evaluate within training epoch, this option will \
                      enable extra N equally spaced evaluations executed \
                      during each training epoch')
    test.add_argument('--test-loader-workers', default=0, type=int,
                      help='number of workers for test data loading')

    # checkpointing
    chkpt = parser.add_argument_group('checkpointing setup')
    chkpt.add_argument('--start-epoch', default=0, type=int,
                       help='manually set initial epoch counter')
    chkpt.add_argument('--resume', default=None, type=str, metavar='PATH',
                       help='resumes training from checkpoint from PATH')
    chkpt.add_argument('--save-all', action='store_true', default=False,
                       help='saves checkpoint after every epoch')
    chkpt.add_argument('--save-freq', default=5000, type=int,
                       help='save checkpoint every SAVE_FREQ batches')
    chkpt.add_argument('--keep-checkpoints', default=0, type=int,
                       help='keep only last KEEP_CHECKPOINTS checkpoints, \
                       affects only checkpoints controlled by --save-freq \
                       option')

    # benchmarking
    benchmark = parser.add_argument_group('benchmark setup')
    benchmark.add_argument('--target-bleu', default=24.0, type=float,
                           help='target accuracy, training will be stopped \
                           when the target is achieved')

    # distributed
    distributed = parser.add_argument_group('distributed setup')
    distributed.add_argument('--rank', default=0, type=int,
                             help='global rank of the process, do not set!')
    distributed.add_argument('--local_rank', default=os.getenv('LOCAL_RANK', 0), type=int,
                             help='local rank of the process, do not set!')
    distributed.add_argument('--enable-apex-allreduce-overlap',
                             action='store_true', default=False,
                             help='enable overlap of allreduce communication \
                             with bprop')
    distributed.add_argument('--apex-num-allreduce-streams',
                             default=1, type=int,
                             help='num. allreduce streams')
    distributed.add_argument('--apex-message-size', default=1e7, type=int,
                             help='min. number of elements in communication \
                             bucket')

    # distributed weight update
    dwu_group = parser.add_argument_group('distributed weight update setup')
    dwu_group.add_argument('--distributed-weight-update', '--dwu', default=0, type=int, metavar='DWU',
                       help='select distributed weight update strategy')
    dwu_group.add_argument('--dwu-group-size', '--dwugs', default=0, type=int, metavar='DWUGS',
                       help='distributed weight update group size. If arg is 0, defaults to one node')
    dwu_group.add_argument('--dwu-num-blocks', '--dwunb', default=8, type=int, metavar='DWUNB',
                       help='number of blocks in dwu scheme')
    dwu_group.add_argument('--dwu-num-chunks', '--dwuchks', default=4, type=int,
                       help='number of chunks of each parameters block')
    dwu_group.add_argument('--dwu-num-rs-pg', '--dwurspg', default=2, type=int, metavar='DWURSPG',
                       help='number of reduction-scatter streams in dwu scheme')
    dwu_group.add_argument('--dwu-num-ar-pg', '--dwuarpg', default=4, type=int, metavar='DWUARPG',
                       help='number of all-reduce streams in dwu scheme')
    dwu_group.add_argument('--dwu-num-ag-pg', '--dwuagpg', default=2, type=int, metavar='DWUAGPG',
                       help='number of all-gather streams in dwu scheme')
    dwu_group.add_argument('--dwu-full-pipeline', action='store_true', 
                       help='whether to do full or partial pipeline')
    dwu_group.add_argument('--dwu-overlap-reductions', action='store_true',
                       help='whether to overlap reductions with backprop')
    dwu_group.add_argument('--dwu-grad-norm', action='store_true',
                       help='whether to compute L2 grad norm')
    dwu_group.add_argument('--dwu-e5m2-allgather', action='store_true',
                       help='whether to use e5m2 allgather')

    args = parser.parse_args()

    args.warmup_steps = literal_eval(args.warmup_steps)
    args.remain_steps = literal_eval(args.remain_steps)
    args.decay_interval = literal_eval(args.decay_interval)

    return args


def build_criterion(vocab_size, padding_idx, smoothing, fusion):
    if smoothing == 0.:
        logging.info(f'Building CrossEntropyLoss')
        loss_weight = torch.ones(vocab_size)
        loss_weight[padding_idx] = 0
        criterion = nn.CrossEntropyLoss(weight=loss_weight, size_average=False)
    else:
        logging.info(f'Building LabelSmoothingLoss (smoothing: {smoothing})')
        criterion = LabelSmoothing(padding_idx, smoothing, fusion=fusion)
    return criterion


def main():
    """
    Launches data-parallel multi-gpu training.
    """

    configure_logger(constants.GNMT)
    log_start(key=constants.INIT_START, log_all_ranks=True)

    args = parse_args()
    device = utils.set_device(args.cuda, args.local_rank)
    distributed = utils.init_distributed(args.cuda)

    # preinit and warmup streams/ groups for apex DDP communicators
    # distributed weight update doesn't require this
    allreduce_communicators=None
    if distributed and args.distributed_weight_update == 0 and \
            args.apex_num_allreduce_streams > 1:
        bucket_pgs = [torch.distributed.new_group() for _ in range(args.apex_num_allreduce_streams)]
        bucket_streams = [torch.cuda.Stream() for _ in range(args.apex_num_allreduce_streams)]
        for pg, stream in zip(bucket_pgs,bucket_streams):
            with torch.cuda.stream(stream):
                torch.distributed.all_reduce(torch.cuda.FloatTensor(1), group=pg)
        allreduce_communicators=(bucket_pgs,bucket_streams)

    args.rank = utils.get_rank()

    if not args.cudnn:
        torch.backends.cudnn.enabled = False

    # create directory for results
    save_path = os.path.join(args.results_dir, args.save)
    args.save_path = save_path
    os.makedirs(save_path, exist_ok=True)

    # setup logging
    log_filename = f'log_rank_{utils.get_rank()}.log'
    utils.setup_logging(args.log_all_ranks,
                        os.path.join(save_path, log_filename))

    if args.env:
        utils.log_env_info()

    logging.info(f'Saving results to: {save_path}')
    logging.info(f'Run arguments: {args}')

    # additional argument check
    if args.math == 'fp32' and (args.fused_attention or args.fused_xentropy):
        logging.warn(f'Only support FP16 `--fused-attention` and '
            '`--fused-xentropy`, disabling them')
        args.fused_attention = args.fused_xentropy = False

    # automatically set train_iter_size based on train_global_batch_size,
    # world_size and per-worker train_batch_size
    if args.train_global_batch_size is not None:
        global_bs = args.train_global_batch_size
        bs = args.train_batch_size
        world_size = utils.get_world_size()
        assert global_bs % (bs * world_size) == 0
        args.train_iter_size = global_bs // (bs * world_size)
        logging.info(f'Global batch size was set in the config, '
                     f'Setting train_iter_size to {args.train_iter_size}')
    # setup L2 promotion
    #aiss 
    #if args.cuda:
    #    utils.l2_promote()

    worker_seeds, shuffling_seeds = utils.setup_seeds(args.seed, args.epochs,
                                                      device)
    worker_seed = worker_seeds[args.rank]
    logging.info(f'Worker {args.rank} is using worker seed: {worker_seed}')
    torch.manual_seed(worker_seed)

    # build tokenizer
    # https://github.com/mlperf/policies/issues/201
    pad_vocab = utils.pad_vocabulary(args.math)
    tokenizer = Tokenizer(os.path.join(args.dataset_dir, config.VOCAB_FNAME),
                          pad_vocab)

    vocab_size = tokenizer.vocab_size

    # build GNMT model
    model_config = {'hidden_size': args.hidden_size,
                    'num_layers': args.num_layers,
                    'dropout': args.dropout, 'batch_first': False,
                    'share_embedding': args.share_embedding,
                    'fusion': args.fused_attention}
    model = GNMT(vocab_size=vocab_size, **model_config)
    logging.info(model)

    # define loss function (criterion) and optimizer
    criterion = build_criterion(vocab_size, config.PAD, args.smoothing,
                                args.fused_xentropy)

    opt_config = {'optimizer': args.optimizer, 'lr': args.lr}
    opt_config.update(literal_eval(args.optimizer_extra))
    logging.info(f'Training optimizer config: {opt_config}')

    num_parameters = sum([l.nelement() for l in model.parameters()])
    logging.info(f'Number of parameters: {num_parameters}')

    # create trainer
    save_info = {'model_config': model_config, 'config': args, 'tokenizer':
                 tokenizer.get_state()}
    loss_scaling = {'init_scale': args.init_scale, 'upscale_interval':
                    args.upscale_interval}
    trainer_options = dict(
        criterion=criterion,
        grad_clip=args.grad_clip,
        iter_size=args.train_iter_size,
        save_path=save_path,
        save_freq=args.save_freq,
        save_info=save_info,
        opt_config=opt_config,
        batch_first=model.batch_first,
        keep_checkpoints=args.keep_checkpoints,
        math=args.math,
        loss_scaling=loss_scaling,
        print_freq=args.print_freq,
        cuda=args.cuda,
        distributed=distributed,
        distributed_overlap_allreduce=args.enable_apex_allreduce_overlap,
        distributed_overlap_num_allreduce_streams=args.apex_num_allreduce_streams,
        distributed_overlap_allreduce_messagesize=args.apex_message_size,
        distributed_overlap_allreduce_communicators=allreduce_communicators,
        intra_epoch_eval=args.intra_epoch_eval,
        prealloc_mode=args.prealloc_mode)

    trainer_options['model'] = model
    #########aiss##########
    #import pdb
    #pdb.set_trace()
    trainer = trainers.Seq2SeqTrainer(args=args, **trainer_options)

    trainer.preallocate(args.train_batch_size, args.max_length_train,
                        training=True)

    log_end(key=constants.INIT_STOP, sync=False)
    log_start(key=constants.RUN_START, sync=True)
    utils.barrier()

    log_event(key=constants.MAX_SEQUENCE_LENGTH,
              value=args.max_length_train,
              metadata={'method': 'discard'})

    if args.use_preproc_data:
        train_data = PreprocessedDataset(
            min_len=args.min_length_train,
            max_len=args.max_length_train,
            vocab_size=tokenizer.vocab_size,
            )
        train_data.read_data(
            os.path.join(args.preproc_data_dir, 'training.bin'),
            tokenizer.vocab_size,
            )
        train_data.prepare()
    else:
        train_data = LazyParallelDataset(
            src_fname=os.path.join(args.dataset_dir, config.SRC_TRAIN_FNAME),
            tgt_fname=os.path.join(args.dataset_dir, config.TGT_TRAIN_FNAME),
            tokenizer=tokenizer,
            min_len=args.min_length_train,
            max_len=args.max_length_train,
            sort=False,
            max_size=args.max_size,
            )

    test_data = TextDataset(
        src_fname=os.path.join(args.dataset_dir, config.SRC_TEST_FNAME),
        tokenizer=tokenizer,
        min_len=args.min_length_test,
        max_len=args.max_length_test,
        sort=True)

    batching_opt = {'shard_size': args.shard_size,
                    'num_buckets': args.num_buckets}

    # get data loaders
    train_loader = train_data.get_loader(batch_size=args.train_batch_size,
                                         seeds=shuffling_seeds,
                                         batch_first=model.batch_first,
                                         shuffle=True,
                                         batching=args.batching,
                                         batching_opt=batching_opt,
                                         num_workers=args.train_loader_workers)

    log_event(key=constants.GLOBAL_BATCH_SIZE,
              value=args.train_batch_size * utils.get_world_size(),
              sync=False)

    test_loader = test_data.get_loader(batch_size=args.test_batch_size,
                                       batch_first=model.batch_first,
                                       shuffle=False,
                                       num_workers=args.test_loader_workers)

    log_event(key=constants.TRAIN_SAMPLES,
              value=train_loader.sampler.num_samples, sync=False)
    log_event(key=constants.EVAL_SAMPLES,
              value=len(test_loader.dataset), sync=False)

    translator = Translator(model=model,
                            tokenizer=tokenizer,
                            loader=test_loader,
                            beam_size=args.beam_size,
                            max_seq_len=args.max_length_test,
                            len_norm_factor=args.len_norm_factor,
                            len_norm_const=args.len_norm_const,
                            cov_penalty_factor=args.cov_penalty_factor,
                            cuda=args.cuda,
                            print_freq=args.print_freq,
                            dataset_dir=args.dataset_dir,
                            target_bleu=args.target_bleu,
                            save_path=args.save_path)

    total_train_iters = len(train_loader) // args.train_iter_size * args.epochs

    scheduler_config = {'warmup_steps': args.warmup_steps,
                        'remain_steps': args.remain_steps,
                        'decay_interval': args.decay_interval,
                        'decay_steps': args.decay_steps,
                        'decay_factor': args.decay_factor}

    logging.info(f'Training LR schedule config: {scheduler_config}')
    scheduler = WarmupMultiStepLR(trainer.optimizer, total_train_iters,
                                  **scheduler_config)
    trainer.scheduler = scheduler
    trainer.translator = translator

    # optionally resume from a checkpoint
    if args.resume:
        checkpoint_file = args.resume
        if os.path.isdir(checkpoint_file):
            checkpoint_file = os.path.join(
                checkpoint_file, 'model_best.pth')
        if os.path.isfile(checkpoint_file):
            trainer.load(checkpoint_file)
        else:
            logging.error(f'No checkpoint found at {args.resume}')

    # training loop
    break_training = False
    test_bleu = None
    for epoch in range(args.start_epoch, args.epochs):
        log_start(key=constants.BLOCK_START,
                  metadata={'first_epoch_num': epoch + 1,
                            'epoch_count': 1},
                  sync=False)
        log_start(key=constants.EPOCH_START,
                  metadata={'epoch_num': epoch + 1},
                  sync=False)

        logging.info(f'Starting epoch {epoch}')
        train_loader.sampler.set_epoch(epoch)

        trainer.epoch = epoch
        train_loss, train_perf = trainer.optimize(train_loader)

        log_end(key=constants.EPOCH_STOP,
                metadata={'epoch_num': epoch + 1},
                sync=False)

        if args.eval:
            log_start(key=constants.EVAL_START,
                      metadata={'epoch_num': epoch + 1},
                      sync=False)
            test_bleu, break_training = translator.run(calc_bleu=True,
                                                       epoch=epoch)
            log_event(key=constants.EVAL_ACCURACY,
                      value=test_bleu / 100,
                      metadata={'epoch_num': epoch + 1},
                      sync=False)
            log_end(key=constants.EVAL_STOP,
                    metadata={'epoch_num': epoch + 1},
                    sync=False)

        acc_log = []
        acc_log += [f'Summary: Epoch: {epoch}']
        acc_log += [f'Training Loss: {train_loss:.4f}']
        if args.eval:
            acc_log += [f'Test BLEU: {test_bleu:.2f}']

        perf_log = []
        perf_log += [f'Performance: Epoch: {epoch}']
        perf_log += [f'Training: {train_perf:.0f} Tok/s']

        if args.rank == 0:
            logging.info('\t'.join(acc_log))
            logging.info('\t'.join(perf_log))

        logging.info(f'Finished epoch {epoch}')
        log_end(key=constants.BLOCK_STOP,
                metadata={'first_epoch_num': epoch + 1},
                sync=False)

        if break_training:
            break

    if args.use_preproc_data:
        train_data.finalize()

    status = 'success' if break_training else 'aborted'
    log_end(key=constants.RUN_STOP,
            metadata={'status': status},
            sync=False)


if __name__ == '__main__':
    main()