attention.py 6.56 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter

import seq2seq.attn_score._C as C


class AttentionScore(torch.autograd.Function):
    @staticmethod
    def forward(ctx, att_query, att_keys, bias, linear_att):
        score = C.forward(att_query, att_keys, bias, linear_att)
        ctx.save_for_backward(att_query, att_keys, bias, linear_att)
        return score

    @staticmethod
    def backward(ctx, grad_output):
        att_query, att_keys, bias, linear_att = ctx.saved_tensors
        grad_query, grad_keys, grad_bias, grad_linear_att = \
            C.backward(grad_output, att_query, att_keys, \
            bias, linear_att)
        return grad_query, grad_keys, grad_bias, grad_linear_att

fused_calc_score = AttentionScore.apply

class BahdanauAttention(nn.Module):
    """
    Bahdanau Attention (https://arxiv.org/abs/1409.0473)
    Implementation is very similar to tf.contrib.seq2seq.BahdanauAttention
    """
    def __init__(self, query_size, key_size, num_units, normalize=False,
                 batch_first=False, init_weight=0.1, fusion=True):
        """
        Constructor for the BahdanauAttention.

        :param query_size: feature dimension for query
        :param key_size: feature dimension for keys
        :param num_units: internal feature dimension
        :param normalize: whether to normalize energy term
        :param batch_first: if True batch size is the 1st dimension, if False
            the sequence is first and batch size is second
        :param init_weight: range for uniform initializer used to initialize
            Linear key and query transform layers and linear_att vector
        """
        super(BahdanauAttention, self).__init__()

        self.normalize = normalize
        self.batch_first = batch_first
        self.num_units = num_units

        self.linear_q = nn.Linear(query_size, num_units, bias=False)
        self.linear_k = nn.Linear(key_size, num_units, bias=False)
        nn.init.uniform_(self.linear_q.weight.data, -init_weight, init_weight)
        nn.init.uniform_(self.linear_k.weight.data, -init_weight, init_weight)

        self.linear_att = Parameter(torch.Tensor(num_units))

        self.mask = None

        if self.normalize:
            self.normalize_scalar = Parameter(torch.Tensor(1))
            self.normalize_bias = Parameter(torch.Tensor(num_units))
        else:
            self.register_parameter('normalize_scalar', None)
            self.register_parameter('normalize_bias', None)

        self.reset_parameters(init_weight)
        self.fusion = fusion
        logging.info(f'Fused attention flag set to {fusion}')

    def reset_parameters(self, init_weight):
        """
        Sets initial random values for trainable parameters.
        """
        stdv = 1. / math.sqrt(self.num_units)
        self.linear_att.data.uniform_(-init_weight, init_weight)

        if self.normalize:
            self.normalize_scalar.data.fill_(stdv)
            self.normalize_bias.data.zero_()

    def set_mask(self, context_len, context):
        """
        sets self.mask which is applied before softmax
        ones for inactive context fields, zeros for active context fields

        :param context_len: b
        :param context: if batch_first: (b x t_k x n) else: (t_k x b x n)

        self.mask: (b x t_k)
        """

        if self.batch_first:
            max_len = context.size(1)
        else:
            max_len = context.size(0)

        indices = torch.arange(0, max_len, dtype=torch.int64,
                               device=context.device)
        self.mask = indices >= (context_len.unsqueeze(1))

    def calc_score(self, att_query, att_keys):
        """
        Calculate Bahdanau score

        :param att_query: b x t_q x n
        :param att_keys: b x t_k x n

        returns: b x t_q x t_k scores
        """

        b, t_k, n = att_keys.size()
        t_q = att_query.size(1)

        att_query = att_query.unsqueeze(2).expand(b, t_q, t_k, n)
        att_keys = att_keys.unsqueeze(1).expand(b, t_q, t_k, n)
        sum_qk = att_query + att_keys

        if self.normalize:
            sum_qk = sum_qk + self.normalize_bias
            linear_att = self.linear_att / self.linear_att.norm()
            linear_att = linear_att * self.normalize_scalar
        else:
            linear_att = self.linear_att

        out = torch.tanh(sum_qk).matmul(linear_att)
        return out

    def forward(self, query, keys):
        """

        :param query: if batch_first: (b x t_q x n) else: (t_q x b x n)
        :param keys: if batch_first: (b x t_k x n) else (t_k x b x n)

        :returns: (context, scores_normalized)
        context: if batch_first: (b x t_q x n) else (t_q x b x n)
        scores_normalized: if batch_first (b x t_q x t_k) else (t_q x b x t_k)
        """

        # first dim of keys and query has to be 'batch', it's needed for bmm
        if not self.batch_first:
            keys = keys.transpose(0, 1)
            if query.dim() == 3:
                query = query.transpose(0, 1)

        if query.dim() == 2:
            single_query = True
            query = query.unsqueeze(1)
        else:
            single_query = False

        b = query.size(0)
        t_k = keys.size(1)
        t_q = query.size(1)

        # FC layers to transform query and key
        processed_query = self.linear_q(query)
        processed_key = self.linear_k(keys)

        # scores: (b x t_q x t_k)
        if self.fusion:
            linear_att = self.linear_att / self.linear_att.norm()
            linear_att = linear_att * self.normalize_scalar
            scores = fused_calc_score(processed_query, processed_key,
                                self.normalize_bias, linear_att)
        else:
            scores = self.calc_score(processed_query, processed_key)

        if self.mask is not None:
            mask = self.mask.unsqueeze(1).expand(b, t_q, t_k)
            # I can't use -INF because of overflow check in pytorch
            scores.data.masked_fill_(mask, -65504.0)

        # Normalize the scores, softmax over t_k
        scores_normalized = F.softmax(scores, dim=-1)

        # Calculate the weighted average of the attention inputs according to
        # the scores
        # context: (b x t_q x n)
        context = torch.bmm(scores_normalized, keys)

        if single_query:
            context = context.squeeze(1)
            scores_normalized = scores_normalized.squeeze(1)
        elif not self.batch_first:
            context = context.transpose(0, 1)
            scores_normalized = scores_normalized.transpose(0, 1)

        return context, scores_normalized