sampler.py 9.32 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import logging

import torch
from torch.utils.data.sampler import Sampler

from seq2seq.utils import get_rank
from seq2seq.utils import get_world_size


class DistributedSampler(Sampler):
    def __init__(self, dataset, batch_size, seeds, world_size=None, rank=None):
        """
        Constructor for the DistributedSampler.

        :param dataset: dataset
        :param batch_size: local batch size
        :param seeds: list of seeds, one seed for each training epoch
        :param world_size: number of distributed workers
        :param rank: rank of the current process
        """
        if world_size is None:
            world_size = get_world_size()
        if rank is None:
            rank = get_rank()

        self.dataset = dataset
        self.world_size = world_size
        self.rank = rank
        self.epoch = 0
        self.seeds = seeds

        self.batch_size = batch_size
        self.global_batch_size = batch_size * world_size

        self.data_len = len(self.dataset)

        self.num_samples = self.data_len // self.global_batch_size \
            * self.global_batch_size

    def init_rng(self):
        """
        Creates new RNG, seed depends on current epoch idx.
        """
        rng = torch.Generator()
        seed = self.seeds[self.epoch]
        logging.info(f'Sampler for epoch {self.epoch} uses seed {seed}')
        rng.manual_seed(seed)
        return rng

    def distribute_batches(self, indices):
        """
        Assigns batches to workers.
        Consecutive ranks are getting consecutive batches.

        :param indices: torch.tensor with batch indices
        """
        assert len(indices) == self.num_samples

        indices = indices.view(-1, self.batch_size)
        indices = indices[self.rank::self.world_size].contiguous()
        indices = indices.view(-1)
        indices = indices.tolist()

        assert len(indices) == self.num_samples // self.world_size
        return indices

    def reshuffle_batches(self, indices, rng):
        """
        Permutes global batches

        :param indices: torch.tensor with batch indices
        :param rng: instance of torch.Generator
        """
        indices = indices.view(-1, self.global_batch_size)
        num_batches = indices.shape[0]
        order = torch.randperm(num_batches, generator=rng)
        indices = indices[order, :]
        indices = indices.view(-1)
        return indices

    def __iter__(self):
        rng = self.init_rng()
        # generate permutation
        indices = torch.randperm(self.data_len, generator=rng)

        # make indices evenly divisible by (batch_size * world_size)
        indices = indices[:self.num_samples]

        # assign batches to workers
        indices = self.distribute_batches(indices)
        return iter(indices)

    def set_epoch(self, epoch):
        """
        Sets current epoch index.
        Epoch index is used to seed RNG in __iter__() function.

        :param epoch: index of current epoch
        """
        self.epoch = epoch

    def __len__(self):
        return self.num_samples // self.world_size


class ShardingSampler(DistributedSampler):
    def __init__(self, dataset, batch_size, seeds, shard_size,
                 world_size=None, rank=None):
        """
        Constructor for the ShardingSampler.

        :param dataset: dataset
        :param batch_size: local batch size
        :param seeds: list of seeds, one seed for each training epoch
        :param shard_size: number of global batches within one shard
        :param world_size: number of distributed workers
        :param rank: rank of the current process
        """

        super().__init__(dataset, batch_size, seeds, world_size, rank)

        self.shard_size = shard_size
        self.num_samples = self.data_len // self.global_batch_size \
            * self.global_batch_size

    def __iter__(self):
        rng = self.init_rng()
        # generate permutation
        indices = torch.randperm(self.data_len, generator=rng)
        # make indices evenly divisible by (batch_size * world_size)
        indices = indices[:self.num_samples]

        # splits the dataset into chunks of 'self.shard_size' global batches
        # each, sorts by (src + tgt) sequence length within each chunk,
        # reshuffles all global batches
        shard_size = self.global_batch_size * self.shard_size
        nshards = (self.num_samples + shard_size - 1) // shard_size

        lengths = self.dataset.lengths[indices]

        shards = [indices[i * shard_size:(i+1) * shard_size] for i in range(nshards)]
        len_shards = [lengths[i * shard_size:(i+1) * shard_size] for i in range(nshards)]

        # sort by (src + tgt) sequence length within each shard
        indices = []
        for len_shard in len_shards:
            _, ind = len_shard.sort()
            indices.append(ind)

        output = tuple(shard[idx] for shard, idx in zip(shards, indices))

        # build batches
        indices = torch.cat(output)
        # perform global reshuffle of all global batches
        indices = self.reshuffle_batches(indices, rng)
        # distribute batches to individual workers
        indices = self.distribute_batches(indices)
        return iter(indices)


class BucketingSampler(DistributedSampler):
    def __init__(self, dataset, batch_size, seeds, num_buckets,
                 world_size=None, rank=None):
        """
        Constructor for the BucketingSampler.

        :param dataset: dataset
        :param batch_size: local batch size
        :param seeds: list of seeds, one seed for each training epoch
        :param num_buckets: number of buckets
        :param world_size: number of distributed workers
        :param rank: rank of the current process
        """

        super().__init__(dataset, batch_size, seeds, world_size, rank)

        self.num_buckets = num_buckets
        bucket_width = (dataset.max_len + num_buckets - 1) // num_buckets

        # assign sentences to buckets based on src and tgt sequence lengths
        bucket_ids = torch.max(dataset.src_lengths // bucket_width,
                               dataset.tgt_lengths // bucket_width)
        bucket_ids.clamp_(0, num_buckets - 1)

        # build buckets
        all_indices = torch.arange(self.data_len)
        self.buckets = []
        self.num_samples = 0
        global_bs = self.global_batch_size

        for bid in range(num_buckets):
            # gather indices for current bucket
            indices = all_indices[bucket_ids == bid]
            self.buckets.append(indices)

            # count number of samples in current bucket
            samples = len(indices) // global_bs * global_bs
            self.num_samples += samples

    def __iter__(self):
        rng = self.init_rng()
        global_bs = self.global_batch_size

        indices = []
        for bid in range(self.num_buckets):
            # random shuffle within current bucket
            perm = torch.randperm(len(self.buckets[bid]), generator=rng)
            bucket_indices = self.buckets[bid][perm]

            # make bucket_indices evenly divisible by global batch size
            length = len(bucket_indices) // global_bs * global_bs
            bucket_indices = bucket_indices[:length]
            assert len(bucket_indices) % self.global_batch_size == 0

            # add samples from current bucket to indices for current epoch
            indices.append(bucket_indices)

        indices = torch.cat(indices)
        assert len(indices) % self.global_batch_size == 0

        # perform global reshuffle of all global batches
        indices = self.reshuffle_batches(indices, rng)
        # distribute batches to individual workers
        indices = self.distribute_batches(indices)
        return iter(indices)


class StaticDistributedSampler(Sampler):
    def __init__(self, dataset, batch_size, pad, world_size=None, rank=None):
        """
        Constructor for the StaticDistributedSampler.

        :param dataset: dataset
        :param batch_size: local batch size
        :param pad: if True: pads dataset to a multiple of global_batch_size
            samples
        :param world_size: number of distributed workers
        :param rank: rank of the current process
        """
        if world_size is None:
            world_size = get_world_size()
        if rank is None:
            rank = get_rank()

        self.world_size = world_size

        global_batch_size = batch_size * world_size

        data_len = len(dataset)
        num_samples = (data_len + global_batch_size - 1) \
            // global_batch_size * global_batch_size
        self.num_samples = num_samples

        indices = list(range(data_len))
        if pad:
            # pad dataset to a multiple of global_batch_size samples, uses
            # sample with idx 0 as pad
            indices += [0] * (num_samples - len(indices))
        else:
            # temporary pad to a multiple of global batch size, pads with "-1"
            # which is later removed from the list of indices
            indices += [-1] * (num_samples - len(indices))
        indices = torch.tensor(indices)

        indices = indices.view(-1, batch_size)
        indices = indices[rank::world_size].contiguous()
        indices = indices.view(-1)
        # remove temporary pad
        indices = indices[indices != -1]
        indices = indices.tolist()
        self.indices = indices

    def __iter__(self):
        return iter(self.indices)

    def __len__(self):
        return len(self.indices)